Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 23, 2014
Accepted September 1, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Low temperature synthesis of various transition metal oxides and their antibacterial activity against multidrug resistance bacterial pathogens
Ruddaraju Lakshmi Kalyani
Jella Venkatraju1
Pratap Kollu2
Nammi Hanumantha Rao3
Venkata Narayana Pammi3†
Srinivasa Rao College of Pharmacy, P. M. Palem, Visakhapatnam, A.P-530041, India 1School of Nano Science and Technology, Chungnam National University, Daeduk Science Town, Daejeon 305-764, Korea 2DST-INSPIRE Faculty, Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Mumbai, India, Korea 3Advanced Analytical Laboratory, DST-PURSE Programme, Andhra University, Visakhapatnam 530003, India
sreepammi@gmail.com
Korean Journal of Chemical Engineering, May 2015, 32(5), 911-916(6), 10.1007/s11814-014-0262-5
Download PDF
Abstract
We report on the synthesis and characterization of various transition metal oxides, ZnO, CuO, TiO2 and Fe2O3, using one pot wet chemical method at low temperature. The prepared metal oxide nanoparticles were characterized by X-ray diffraction (XRD), Raman and transmission electron microscopy (TEM) analyses. We tested antibacterial activity of as-prepared transition metal oxides against various multi-drug resistance bacterial pathogens such as Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Staphylococcus aureus. XRD and TEM analyses revealed the average crystallite sizes were 18 nm, 20 nm, 10 nm and 22 nm for ZnO, CuO, TiO2 and Fe2O3 nanoparticles, respectively. Further, the bacterial strains were grown in presence of different concentrations of four nanoparticles and it is evident from the results that ZnO, CuO nano particles showed greater bactericidal effect than nano-TiO2 and nano-Fe2O3, though nano-TiO2 possess less particle size than other fabricated metal oxide nanoparticles.
References
Tenover FC, Am. J. Medicine, 119, 3 (2006)
Marcato PD, Duran N, J. Nanosci. Nanotechnol., 8, 2216 (2008)
Singh R, Singh NH, J. Biomed. Nanotechnol., 7, 489 (2011)
Rizwan W, Young-Soon K, Amrita M, Soon-II Y, Shin HS, J. Nanoscale Res. Lett., 5(10), 1675 (2010)
Priyanka G, Brian P, David WB, Wenjie H, William PJ, Anne JA, J. Bio. Eng., 3(9), 1 (2009)
Sawai J, J. Microbiol. Methods, 54, 177 (2003)
Soltani M, Ghodratnema M, Ahari H, Mousavi HAE, Atee M, Dastmalchi F, Rahmanya J, International Journal of Veterinary Research, 3(2), 137 (2009)
Wang Z, Lee Y, Wu B, Chemosphere, 80, 525 (2010)
Mohsen J, Zahra B, Afr. J. Biotechnol., 7(25), 4926 (2008)
Sobha K, Surendranath K, Meena V, Jwala KT, Swetha N, Latha KSM, J. Biotechnol. Mol. Bio. Rev., 5(1), 1 (2010)
Laura KA, Delina YL, Pedro JJA, J. Water Res., 40, 3527 (2006)
Reddy KM, Kevin F, Jason B, Denise GW, Cory H, Alex P, J. Appl. Phys. Lett., 90(21), 1 (2007)
Vargas-Reus MA, Memarzadeh K, Huang J, Ren GG, Allaker RP, International Journal of Antimicrobial Agents, 40, 135 (2012)
Iravani S, Green Chem., 13, 2638 (2011)
Bai S, Hu J, Li D, Luo R, Chena A, Liub CC, J. Mater. Chem., 21, 12288 (2011)
Xu JF, Ji W, Shen X, Tang SH, J. Solid State Chem., 147, 516 (1999)
Ohsaka T, J. Phys. Soc. Jpn., 48, 1661 (1980)
Thierry D, Persson D, Legraph C, Delichere D, Joiret S, Pallota C, Hugot-Legoff A, J. Electrochem. Soc., 135, 305 (1988)
Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A, Adv. Funct. Mater., 15(10), 1708 (2005)
Zhang L, Jiang Y, Ding Y, Daskalakis N, Jeuken L, Povey M, O’Neill AJ, York DW, Progress in Natural Science, 18, 939 (2008)
Baek Y, An Y, Sci. Total Environ., 409, 1603 (2011)
Sawai J, Yoshikawa T, J. Appl. Microbiol., 96(4), 803 (2004)
Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP, Int. J. Antimicrob. Agents, 33(6), 587 (2009)
Keenan CR, Sedlak DL, Environ. Technol., 42(4), 1262 (2008)
Allahverdiyev M, Abamor ES, Bagirova M, Rafailovich M, Future Microbiology, 6, 933 (2011)
Brayner R, Nano Today, 3(1-2), 48 (2008)
Marcato PD, Duran N, J. Nanosci. Nanotechnol., 8, 2216 (2008)
Singh R, Singh NH, J. Biomed. Nanotechnol., 7, 489 (2011)
Rizwan W, Young-Soon K, Amrita M, Soon-II Y, Shin HS, J. Nanoscale Res. Lett., 5(10), 1675 (2010)
Priyanka G, Brian P, David WB, Wenjie H, William PJ, Anne JA, J. Bio. Eng., 3(9), 1 (2009)
Sawai J, J. Microbiol. Methods, 54, 177 (2003)
Soltani M, Ghodratnema M, Ahari H, Mousavi HAE, Atee M, Dastmalchi F, Rahmanya J, International Journal of Veterinary Research, 3(2), 137 (2009)
Wang Z, Lee Y, Wu B, Chemosphere, 80, 525 (2010)
Mohsen J, Zahra B, Afr. J. Biotechnol., 7(25), 4926 (2008)
Sobha K, Surendranath K, Meena V, Jwala KT, Swetha N, Latha KSM, J. Biotechnol. Mol. Bio. Rev., 5(1), 1 (2010)
Laura KA, Delina YL, Pedro JJA, J. Water Res., 40, 3527 (2006)
Reddy KM, Kevin F, Jason B, Denise GW, Cory H, Alex P, J. Appl. Phys. Lett., 90(21), 1 (2007)
Vargas-Reus MA, Memarzadeh K, Huang J, Ren GG, Allaker RP, International Journal of Antimicrobial Agents, 40, 135 (2012)
Iravani S, Green Chem., 13, 2638 (2011)
Bai S, Hu J, Li D, Luo R, Chena A, Liub CC, J. Mater. Chem., 21, 12288 (2011)
Xu JF, Ji W, Shen X, Tang SH, J. Solid State Chem., 147, 516 (1999)
Ohsaka T, J. Phys. Soc. Jpn., 48, 1661 (1980)
Thierry D, Persson D, Legraph C, Delichere D, Joiret S, Pallota C, Hugot-Legoff A, J. Electrochem. Soc., 135, 305 (1988)
Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A, Adv. Funct. Mater., 15(10), 1708 (2005)
Zhang L, Jiang Y, Ding Y, Daskalakis N, Jeuken L, Povey M, O’Neill AJ, York DW, Progress in Natural Science, 18, 939 (2008)
Baek Y, An Y, Sci. Total Environ., 409, 1603 (2011)
Sawai J, Yoshikawa T, J. Appl. Microbiol., 96(4), 803 (2004)
Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP, Int. J. Antimicrob. Agents, 33(6), 587 (2009)
Keenan CR, Sedlak DL, Environ. Technol., 42(4), 1262 (2008)
Allahverdiyev M, Abamor ES, Bagirova M, Rafailovich M, Future Microbiology, 6, 933 (2011)
Brayner R, Nano Today, 3(1-2), 48 (2008)