ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 10, 2014
Accepted September 27, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Monte Carlo simulation of free energy for the solid-liquid equilibrium of methane

Department of Chemical Engineering, University of Seoul, Siripdae-gil 13, Dongdaemun-gu, Seoul 130-743, Korea
changjaee@uos.ac.kr
Korean Journal of Chemical Engineering, May 2015, 32(5), 939-949(11), 10.1007/s11814-014-0292-z
downloadDownload PDF

Abstract

The thermodynamic properties of methane, particularly for solid-liquid equilibrium, are calculated by Monte Carlo simulation. For various potential models of methane, we explicitly calculated free energies and chemical potentials of the solid and liquid phases of methane by using the expanded ensemble method and the thermodynamic integration method. The Einstein-molecule method combined with the expanded ensemble method is used for the solid phase, and thermodynamic integration for the liquid phase. Coexistence properties such as melting temperature, entropy change and enthalpy change of melting are predicted and compared with experiment. Among the potential models studied, the OPLS-AA model shows the best performance in predicting the solid-liquid coexistence properties of methane. The melting temperature at zero pressure is predicted to be 92.6 K, in good agreement with the experimental_x000D_ value of 90.6 K. While other all-atom potential models reasonably predict the density of solid methane within an error of 5%, they tend to underestimate the melting temperature. The OPLS-AA potential model yields the most accurate value for the entropy change of melting, predicted to be 8.71 J/mol·K. This is within an error of 16%, compared to the experimental value of 10.4 J/mol·K. Also, the enthalpy change of melting is predicted to be 0.81 kJ/mol with an error of 14%, compared to the experimental value of 0.94 kJ/mol.

References

Press W, J. Chem. Phys., ., 56, 2597 (1972)
Thiery MM, Fabre D, Kobashi K, J. Chem. Phys., 83, 6165 (1985)
Hebert P, Polian A, Loubeyre P, Le Toullec R, Phys. Rev. B, 36, 9196 (1987)
Bini R, Ulivi L, Jodl HJ, Salvi PR, J. Chem. Phys., 103(4), 1353 (1995)
Bini R, Pratesi G, Phys. Rev. B, 55, 14800 (1997)
NIST Chemistry WebBook, http://webbook.nist.gov/chemistry.
Bounds DG, Klein ML, Patey GN, J. Chem. Phys., 72, 5348 (1980)
Williams DE, J. Chem. Phys., 47, 4680 (1967)
Righini R, Maki K, Klein ML, Chem. Phys. Lett., 80, 301 (1981)
El-Sheikh SM, Barakat K, Salem NM, J. Chem. Phys., 124, 124517 (2006)
Fitzwater S, Bartell LS, J. Am. Chem. Soc., 98, 5107 (1976)
Schoen M, Hoheisel C, Beyer O, Mol. Phys., 58, 699 (1986)
Saager B, Fischer J, Fluid Phase Equilib., 57, 35 (1990)
Nagy J, Weaver DF, Smith VH, J. Phys. Chem., 99(20), 8058 (1995)
Stassen H, J. Mol. Struct.: THEOCHEM, 464, 107 (1999)
Murad S, Gubbins KE, Lykos P, in ACS Symp. Ser., 62 (1978)
Jorgensen WL, Maxwell DS, Tiradorives J, J. Am. Chem. Soc., 118(45), 11225 (1996)
Lyubartsev AP, Martsinovski AA, Shevkunov SV, Vorontsov-Velyaminov PN, J. Chem. Phys., 96, 1776 (1992)
Vega C, Noya EG, J. Chem. Phys., 127, 154113 (2007)
Frenkel D, Smit B, Understanding Molecular Simulations, 2nd Ed., Academic Press, USA (2002)
Kofke DA, J. Chem. Phys., 98, 4149 (1993)
Martin MG, Siepmann JI, J. Phys. Chem. B, 102(14), 2569 (1998)
Parrinello M, Rahman A, J. Appl. Phys., 52, 7182 (1981)
Yashonath S, Rao CNR, Mol. Phys., 54, 245 (1985)
Kim M, Chang J, Sandler SI, J. Chem Phys., 140, 084110 (2014)
Frenkel D, Ladd AJC, J. Chem. Phys., 81, 3188 (1984)
Polson JM, Trizac E, Pronk S, Frenkel D, J. Chem. Phys., 112(12), 5339 (2000)
Almarza NG, J. Chem. Phys., 126, 211103 (2007)
Baez LA, Clancy P, Mol. Phys., 86, 385 (1995)
Vlot MJ, Huinink J, van der Eerden JP, J. Chem. Phys., 110(1), 55 (1999)
Chang J, Sandler SI, J. Chem Phys., 125, 054705 (2006)
McQuarrie DA, Statistical Mechanics, Harper and Row, USA (1976)
Vega C, Sanz E, Abascal JLF, Noya EG, J. Phys.: Condens. Matter, 20, 153101 (2008)
Perez-Sanchez G, Gonzalez-Salgado D, Pineiro M, Vega C, J. Chem. Phys., 138, 084506 (2013)
Chang J, Sandler SI, J. Chem. Phys., 118(18), 8390 (2003)
Chang J, Sandler SI, J. Chem. Phys., 121(15), 7474 (2004)
Chang J, Lenhoff AM, Sandler SI, J. Phys. Chem. B, 109(41), 19507 (2005)
Andersen HC, Chandler D, Weeks JD, J. Chem. Phys., 56, 3812 (1972)
Khare AA, Rutledge GC, J. Chem. Phys., 110(6), 3063 (1999)
Khare AA, Rutledge GC, J. Phys. Chem. B, 104(15), 3639 (2000)
Boulougouris GC, Errington JR, Economou IG, Panagiotopoulos AZ, Theodorou DN, J. Phys. Chem. B, 104(20), 4958 (2000)
Chang J, J. Chem. Phys., 131, 074103 (2009)
Chang J, Korean J. Chem. Eng., 28(2), 597 (2011)
Bol’shutkin DN, Gasan VM, Prokhvatilov AI, J. Struct. Chem., 12, 670 (1971)
Stryland JC, Crawford JE, Mastoor MA, Can. J. Phys., 38, 1546 (1960)
Grace JD, Kennedy GC, J. Phys. Chem. Solids, 28, 977 (1967)
Yagi T, Suzuki H, Proc. Jpn. Acad B, 66, 167 (1990)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로