Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 25, 2014
Accepted November 20, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Gas-liquid mass transfer coefficient of methane in bubble column reactor
Jaewon Lee
Muhammad Yasin1
Shinyoung Park1
In Seop Chang1
Kyoung-Su Ha
Eun Yeol Lee2
Jinwon Lee†
Choongik Kim†
Department of Chemical and Biomolecular Engineering, Sogang University, 1, Shinsoo-dong, Mapo-gu, Seoul 121-742, Korea 1School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261, Cheomdangwagi-ro, Buk-gu, Gwangju 500-712, Korea 2Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 446-701, Korea
jinwonlee@sogang.ac.kr
Korean Journal of Chemical Engineering, June 2015, 32(6), 1060-1063(4), 10.1007/s11814-014-0341-7
Download PDF
Abstract
Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (kLa). The feasibility of the new reactor was demonstrated by measuring kLa values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large kLa value of 102.9 h.1 was obtained.
References
Naik S, Goud V, Rout P, Dalai A, Renew. Sust. Energ. Rev., 14, 578 (2010)
Dubois I, Curr. Opin. Environ., 3, 11 (2011)
Novaes E, Kirst M, Chiang V, Sederoff H, Sederoff R, Plant Phys., 154, 555 (2010)
Henstra A, Sipma J, Rinzema A, Stams A, Curr. Opin. Biotechnol., 18, 200 (2007)
Montgomery SL, Jarvie DM, Bowker KA, Pollastro RM, AAPG Bull., 89(2), 155 (2005)
Ross DJK, Bustin RM, Mar. Petrol. Geol., 26, 916 (2005)
Park D, Lee J, Korean J. Chem. Eng., 30(5), 977 (2013)
Morris SA, Radajewski S, Willison TW, Murrel JC, Appl. Environ. Microbiol., 68, 1446 (2002)
King GM, Adamsen APS, Appl. Environ. Microbiol., 58, 2758 (1992)
Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM, Nature, 450, 874 (2007)
Setzmann U, Wagner W, Pruss A, J. Phys. Chem. Ref Data, 20, 1061 (2001)
Helgeson HC, Richard L, McKenzie W, Norton DL, Schmitt A, Geochim. Cosmochim. Ac., 73, 594 (2009)
Duan Z, Mao S, Geochim. Cosmochim. Ac., 70, 3369 (2006)
Duan Z, Moller N, Greenberg J, Weare JH, Geochim. Cosmochim. Acta, 56, 1451 (1992)
Akita K, Yoshidal F, Ind. Eng. Chem. Proc. Des. Dev., 12, 76 (1973)
Park S, Yasin M, Kim D, Park H, Kang C, Kim D, Chang I, Ind. Microbiol. Biotechnol., 40, 995 (2013)
Riggs SS, Heindel TJ, Biotechnol. Prog., 22(3), 903 (2006)
Riet KV, Ind. Eng. Chem. Proc. Des. Dev., 18, 357 (1979)
Yu YH, Ramsay JA, Ramsay BA, Biotechnol. Bioeng., 95(5), 788 (2006)
Yamamoto S, Alcauskas JB, Crozier TE, J. Chem. Eng. Data, 2, 1 (1976)
Karimi A, Golbabaei F, Mehrnia MR, Neghab M, Mohammad K, Nikpey A, Pourmand MR, Iran. J. Environ. Health Sci. Eng., 10, 1 (2013)
Martin M, Montes FJ, Galan MA, Chem. Eng. Sci., 63(12), 3223 (2008)
Fujasova M, Linek V, Moucha T, Chem. Eng. Sci., 62(6), 1650 (2007)
Puthli M, Rathod V, Pandit A, Biochem. Eng. J., 23, 25 (2005)
Arjunwadkar S, Sarvanan K, Kulkarni P, Pandit A, Biochem. Eng. J., 1, 99 (1998)
Dubois I, Curr. Opin. Environ., 3, 11 (2011)
Novaes E, Kirst M, Chiang V, Sederoff H, Sederoff R, Plant Phys., 154, 555 (2010)
Henstra A, Sipma J, Rinzema A, Stams A, Curr. Opin. Biotechnol., 18, 200 (2007)
Montgomery SL, Jarvie DM, Bowker KA, Pollastro RM, AAPG Bull., 89(2), 155 (2005)
Ross DJK, Bustin RM, Mar. Petrol. Geol., 26, 916 (2005)
Park D, Lee J, Korean J. Chem. Eng., 30(5), 977 (2013)
Morris SA, Radajewski S, Willison TW, Murrel JC, Appl. Environ. Microbiol., 68, 1446 (2002)
King GM, Adamsen APS, Appl. Environ. Microbiol., 58, 2758 (1992)
Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM, Nature, 450, 874 (2007)
Setzmann U, Wagner W, Pruss A, J. Phys. Chem. Ref Data, 20, 1061 (2001)
Helgeson HC, Richard L, McKenzie W, Norton DL, Schmitt A, Geochim. Cosmochim. Ac., 73, 594 (2009)
Duan Z, Mao S, Geochim. Cosmochim. Ac., 70, 3369 (2006)
Duan Z, Moller N, Greenberg J, Weare JH, Geochim. Cosmochim. Acta, 56, 1451 (1992)
Akita K, Yoshidal F, Ind. Eng. Chem. Proc. Des. Dev., 12, 76 (1973)
Park S, Yasin M, Kim D, Park H, Kang C, Kim D, Chang I, Ind. Microbiol. Biotechnol., 40, 995 (2013)
Riggs SS, Heindel TJ, Biotechnol. Prog., 22(3), 903 (2006)
Riet KV, Ind. Eng. Chem. Proc. Des. Dev., 18, 357 (1979)
Yu YH, Ramsay JA, Ramsay BA, Biotechnol. Bioeng., 95(5), 788 (2006)
Yamamoto S, Alcauskas JB, Crozier TE, J. Chem. Eng. Data, 2, 1 (1976)
Karimi A, Golbabaei F, Mehrnia MR, Neghab M, Mohammad K, Nikpey A, Pourmand MR, Iran. J. Environ. Health Sci. Eng., 10, 1 (2013)
Martin M, Montes FJ, Galan MA, Chem. Eng. Sci., 63(12), 3223 (2008)
Fujasova M, Linek V, Moucha T, Chem. Eng. Sci., 62(6), 1650 (2007)
Puthli M, Rathod V, Pandit A, Biochem. Eng. J., 23, 25 (2005)
Arjunwadkar S, Sarvanan K, Kulkarni P, Pandit A, Biochem. Eng. J., 1, 99 (1998)