Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 30, 2014
Accepted October 5, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Application of cross-linked poly(acrylic acid)-poly(styrene-alt-maleic anhydride) core-shell microcapsule absorbents in cement mortars
Korea Institute of Industrial Technology, Seobuk-gu, Cheonan-si, Chungcheongnam-do 331-822, Korea 1Department of Civil Engineering, Keimyung University, Dalseo-gu, Daegu 704-701, Korea 2Department of Chemical Engineering, Keimyung University, Dalseo-gu, Daegu 704-701, Korea
Korean Journal of Chemical Engineering, June 2015, 32(6), 1170-1177(8), 10.1007/s11814-014-0302-1
Download PDF
Abstract
We synthesized core-shell microcapsule absorbents with crosslinked poly(acrylic acid) (PAA) as the core and poly(styrene-alt-maleic anhydride) (cPAA-PSMA) as the shell by the precipitation polymerization method for delayed absorption of excess water in cement mortar. To control the shell thickness, cPAA-PSMA capsules were synthesized with the core-to-shell monomer mass ratios of 1 : 0 (cPAA #1), 1 : 0.5 (cPAA-PSMA #2), 1 : 1 (cPAA-PSMA #3), and 1 : 1.5 (cPAA-PSMA #4). The viscosity of the cement paste with cPAA-PSMA #4 absorbent increased slowly until 90minutes after absorbent addition, beyond which it increased rapidly. This suggests that mortars with cPAA-PSMA #4 absorbents can secure up to 90 minutes of working time. Incorporation of 1.0 wt% cPAA-PSMA #4 into cement mortar increased the compressive and flexural strengths by approximately 35% and 22%, respectively, compared to those of cement mortars without absorbents.
References
Williams DA, Saak AW, Jennings HM, Cem. Concr. Res., 29, 1491 (1999)
Rha CY, Seong JW, Kim CE, Lee SK, Kim WK, J. Mater. Sci., 34(19), 4653 (1999)
Rha CY, Kim CE, Lee CS, Kim KI, Lee SK, Cem. Concr. Res., 29, 231 (1999)
Bunyakan C, Hunkeler D, Polymer, 40(23), 6213 (1999)
Bunyakan C, Armanet L, Hunkeler D, Polymer, 40(23), 6225 (1999)
Peng J, Zhang JQJ, Chen M, Wan T, Cem. Concr. Res., 35, 527 (2005)
Maltais Y, Marchand J, Cem. Concr. Res., 27, 1009 (1997)
Knapen E, Gemert DV, Cem. Concr. Res., 39, 6 (2009)
Hwang K, Ha K, Korean J. Chem. Eng., 31(5), 911 (2014)
Tang CY, Ye SH, Liu HQ, Polymer, 48(15), 4482 (2007)
Domone P, Cem. Concr. Res., 28, 177 (1998)
Zain MFM, Safiuddin M, Yusol KM, Cem. Concr. Res., 29, 1427 (1999)
Jennings HM, Cem. Concr. Res., 30, 101 (2000)
Allen AJ, Thomas JJ, Jennings HM, Nat. Mater., 6(4), 311 (2007)
Kovler K, Adv. Cem. Res., 10, 81 (1998)
Chandra S, Ohama Y, Polymer in Concrete, CRC Press, Boca Raton (1994).
Taylor HFW, Cement Chemistry, 2nd Ed. Thomas Telford Service Ltd., London (1997).
Tennis PD, Jennings HM, Cem. Concr. Res., 30, 855 (2000)
Meth PK, Monteiro PJ, CONCRETE: Microstructure, Properties, and Materials, 3rd Ed. McGraw-Hill, New York (2006).
Viehland D, Li JF, Yuan LJ, Li Z, J. Am. Ceram. Soc., 79, 1731 (1996)
Johannesson B, Utgenannt P, Cem. Concr. Res., 31, 925 (2001)
Lothenbach B, Matschei T, Moschnner G, Glasser FP, Cem. Concr. Res., 38, 1 (2008)
Diamond S, Cem. Concr. Res., 30, 1517 (2000)
Plank J, Sachsenhauser B, Cem. Concr. Res., 39, 1 (2009)
Lee KJ, Byun SH, Song JT, J. Korean Ceram. Soc., 46, 657 (2009)
An L, Wang AQ, Chen JM, J. Appl. Polym. Sci., 94(5), 1869 (2004)
Huntzinger DN, Eatmon TD, J. Clean Prod., 17, 668 (2009)
Rha CY, Seong JW, Kim CE, Lee SK, Kim WK, J. Mater. Sci., 34(19), 4653 (1999)
Rha CY, Kim CE, Lee CS, Kim KI, Lee SK, Cem. Concr. Res., 29, 231 (1999)
Bunyakan C, Hunkeler D, Polymer, 40(23), 6213 (1999)
Bunyakan C, Armanet L, Hunkeler D, Polymer, 40(23), 6225 (1999)
Peng J, Zhang JQJ, Chen M, Wan T, Cem. Concr. Res., 35, 527 (2005)
Maltais Y, Marchand J, Cem. Concr. Res., 27, 1009 (1997)
Knapen E, Gemert DV, Cem. Concr. Res., 39, 6 (2009)
Hwang K, Ha K, Korean J. Chem. Eng., 31(5), 911 (2014)
Tang CY, Ye SH, Liu HQ, Polymer, 48(15), 4482 (2007)
Domone P, Cem. Concr. Res., 28, 177 (1998)
Zain MFM, Safiuddin M, Yusol KM, Cem. Concr. Res., 29, 1427 (1999)
Jennings HM, Cem. Concr. Res., 30, 101 (2000)
Allen AJ, Thomas JJ, Jennings HM, Nat. Mater., 6(4), 311 (2007)
Kovler K, Adv. Cem. Res., 10, 81 (1998)
Chandra S, Ohama Y, Polymer in Concrete, CRC Press, Boca Raton (1994).
Taylor HFW, Cement Chemistry, 2nd Ed. Thomas Telford Service Ltd., London (1997).
Tennis PD, Jennings HM, Cem. Concr. Res., 30, 855 (2000)
Meth PK, Monteiro PJ, CONCRETE: Microstructure, Properties, and Materials, 3rd Ed. McGraw-Hill, New York (2006).
Viehland D, Li JF, Yuan LJ, Li Z, J. Am. Ceram. Soc., 79, 1731 (1996)
Johannesson B, Utgenannt P, Cem. Concr. Res., 31, 925 (2001)
Lothenbach B, Matschei T, Moschnner G, Glasser FP, Cem. Concr. Res., 38, 1 (2008)
Diamond S, Cem. Concr. Res., 30, 1517 (2000)
Plank J, Sachsenhauser B, Cem. Concr. Res., 39, 1 (2009)
Lee KJ, Byun SH, Song JT, J. Korean Ceram. Soc., 46, 657 (2009)
An L, Wang AQ, Chen JM, J. Appl. Polym. Sci., 94(5), 1869 (2004)
Huntzinger DN, Eatmon TD, J. Clean Prod., 17, 668 (2009)