ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 17, 2014
Accepted October 29, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Homogeneous catalytic activity of gold nanoparticles synthesized using turnip (Brassica rapa L.) leaf extract in the reductive degradation of cationic azo dye

School of Biotechnology and Graduate School of Biochemistry, Yeungnam University, Gyeongsan 712–749, Korea
Korean Journal of Chemical Engineering, July 2015, 32(7), 1273-1277(5), 10.1007/s11814-014-0321-y
downloadDownload PDF

Abstract

A new greener strategy for the synthesis and stabilization of gold nanoparticles using aqueous turnip leaf extract under ambient conditions is reported in this study. The formation of gold nanoparticles was monitored using a UV-Vis spectrophotometer and the maximum absorption peak (λmax) at 535 nm with a visual color change to pinkishred confirmed the gold nanoparticles. Further characterization was conducted using Fourier-transform Infra-red spectrometry (FT-IR), powder X-ray diffractometry (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS) with zeta potential at pH 7.5. The stability of the nanoparticles was due to the capping of nanoparticles with amine groups and ortho-substituted aromatic phytoconstituents, which exhibit higher negative values of zeta potential (ζ). XRD pattern revealed the formation of face-centered cubic (fcc) lattice crystals of gold nanoparticles, while TEM have demonstrated the size of gold nanoparticles ranging from 3 to 58 nm. The as-synthesized gold nanoparticles showed rapid catalytic reduction of methylene blue (MB) dye to leuco MB in the presence of sodium borohydride (NaBH4). The reduction reaction followed pseudo-first order kinetics with a reaction rate constant of 0.372 min.1. This process of nanoparticle synthesis is simple, nontoxic and environmentally benign compared to the chemical synthetic routes.

References

Ma Z, Overbury SH, Dai S, Gold nanoparticles as chemical catalysts, Encyclopedia of Inorganic Chemistry (2009).
Narayanan KB, Sakthivel N, Adv. Colloid Interface Sci., 169, 59 (2011)
Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M, Nat. Mater., 3(7), 482 (2004)
Shankar SS, Rai A, Ahmad A, Sastry M, J. Colloid Interface Sci., 275(2), 496 (2004)
Ankamwar B, Damle C, Ahmad A, Sastry M, J. Nanosci. Nanotechnol., 5, 1665 (2005)
Ankamwar B, Chaudhary M, Sastry M, Synth. React. Inorg. Met-Org. Nanometal Chem., 35, 19 (2005)
Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M, Biotechnol. Prog., 22(2), 577 (2006)
Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C, Nanotechnology, 18, 105104 (2007)
Vilchis-Nestor R, Sanchez-Mendieta V, Camacho-Lopez MA, Gomez-Espinosa RM, Camacho-Lopez MA, Arenas-Alatorre JA, Mater. Lett., 65, 3103 (2008)
Kasthuri J, Veerapandian S, Rajendiran N, Colloids Surf. B: Biointerfaces, 68, 55 (2009)
Kasthuri J, Kathiravan K, Rajendiran N, J. Nanopart. Res., 11, 1075 (2009)
Raghunandan D, Basavaraja S, Mahesh B, Balaji S, Manjunath SY, Venkataraman A, Nanobiotechnology, 5, 34 (2009)
Song JY, Jang HK, Kim BS, Process Biochem., 44, 1133 (2009)
Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP, J. Nanopart. Res., 13, 2981 (2011)
Valli JS, Vaseeharan B, Mater. Lett., 82, 171 (2012)
Sahu N, Soni D, Chandrashekhar B, Sarangi BK, Satpute D, Pandey RA, Bioproc. Biosyst. Eng., 36, 999 (2013)
Cartea ME, Francisco M, Soengas P, Velasco P, Molecules, 16, 251 (2011)
Gillman PK, J. Psychopharmacol., 25, 429 (2011)
Epe B, Hegler J, Wild D, Carcinogenesis, 10, 2019 (1989)
Galagan Y, Su WF, J. Photochem. Photobiol., 195, 378 (2008)
Edison TJI, Sethuraman MG, Process Biochem., 47, 1351 (2012)
Klug P, Alexander LE, X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd Ed., Wiley, New York (1974).
Hvolbaek B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Norskov JK, Nano Today, 2(4), 14 (2007)
Valodkar M, Jadeja RN, Thounaojam MC, Devkar RV, Thakore S, Mater. Chem. Phys., 128(1-2), 83 (2011)
Zakaria HM, Shah A, Konieczny M, Hoffmann JA, Nijdam AJ, Reeves ME, Langmuir, 29, 7661 (2013)
Selvakannan PR, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB, Sastry M, Langmuir, 20(18), 7825 (2004)
Surovtseva NI, Eremenko AM, Smirnova NP, Pokrovskii VA, Fesenko TV, Starukh GN, Theor. Exp. Chem., 43, 235 (2007)
Cheval N, Gindy N, Flowkes C, Fahmi A, Nanoscale Res. Lett., 7, 182 (2012)
Haruta M, J. Catal., 115, 301 (1989)
Laoufi I, Lazzari R, Jupille J, Robach O, Garaud S, Cabailh G, Dolle P, Cruguel H, Bailly A, J. Phys. Chem. C, 115, 4673 (2011)
Narayanan KB, Sakthivel N, Bioresour. Technol., 102(22), 10737 (2011)
Mahmoodi NM, J. Environ. Eng., 139, 1382 (2013)
Saatci Y, J. Environ. Eng., 136, 1000 (2010)
Narayanan KB, Sakthivel N, J. Hazard. Mater., 189(1-2), 519 (2011)
Srivastava SK, Yamada R, Ogino C, Kondo A, Nanoscale Res. Lett., 8, 70 (2013)
Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T, J. Phys. Chem. C, 111, 4596 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로