ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 1, 2014
Accepted November 7, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Hierarchical SAPO-34 catalytic support for superior selectivity toward propylene in propane dehydrogenation process

School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box 11365 4563, Iran
shfatemi@ut.ac.ir
Korean Journal of Chemical Engineering, July 2015, 32(7), 1289-1296(8), 10.1007/s11814-014-0330-x
downloadDownload PDF

Abstract

SAPO-34 molecular sieve with tuned hierarchical structure was synthesized and used as the catalytic support for propane dehydrogenation (PDH) reaction to receive propylene with high selectivity. Synthesized material was characterized by XRD, FESEM, BET, ICP, FT-IR and TPO techniques. The Pt-Sn/SAPO-34 (hierarchical and regular ones) catalysts were prepared by impregnation method, and then the catalytic activity and selectivity of the catalysts were evaluated in PDH reaction. The results were compared with commercial Pt-Sn/γ-Al2O3 catalyst at the same operational conditions. Results revealed that hierarchical SAPO-34 based catalyst was the most efficient catalyst with superior activity and high propylene selectivity. The results suggested higher stability of the catalyst with hierarchical structure during seven hours reaction. Moreover, the impact of operational conditions was investigated on the performance of Pt-Sn/hierarchical SAPO for the temperature range of 550-650 oC, weight hourly space velocity of 4 and 8 h.1 and H2/C3 molar ratios of 0.2-0.8, at normal pressure.

References

Li X, Li CH, Yuan Q, Yang CH, Shan HG, Zhang J, Am. Chem. Soc., 48, 910 (2003)
AL WAHABI S-M, Texas A&M University (2003).
Chen JQ, Bozzano A, Glover B, Fuglerud T, Kvisle S, Catal. Today, 106(1-4), 103 (2005)
Zhou HQ, Wang Y, Wei F, Wang DZ, Wang ZW, Appl. Catal. A: Gen., 348(1), 135 (2008)
Nawaz Z, Wei F, J. Ind. Eng. Chem., 17(3), 389 (2011)
Airaksinen S, Chromium oxide catalysts in the dehydrogenation of alkanes, Industrial Chemistry Publication Series, Finland (2005).
Medrano JA, Julian I, Herguido J, Menendez M, J. Membr. Sci., 3, 69 (2013)
Wittcoff HA, Reuben BG, Plotkin JS, Industrial arganic chemicals, John Wiley & Sons (2012).
Lobera MP, Tellez C, Herguido J, Menendez M, Ind. Eng. Chem. Res., 47(23), 9314 (2008)
Heinritz-Adrian M, Wenzel S, Youssef F, Petroleum Technology Quarterly, 13, 83 (2008)
Bloch HS, Skokie, US Patent, 3,448,165 (1969).
Bhasin MM, McCain JH, Vora BV, Imai T, Pujado PR, Appl. Catal. A: Gen., 221(1-2), 397 (2001)
Nawaz Z, Baksh F, Zhu J, Wei F, J. Ind. Eng. Chem., 19(2), 540 (2013)
Zhang YW, Zhou YM, Qiu AD, Wang Y, Xu Y, Wu PC, Ind. Eng. Chem. Res., 45(7), 2213 (2006)
Nawaz ZS, Chu Y, Yang W, Tang XP, Wang Y, Wei F, Ind. Eng. Chem. Res., 49(10), 4614 (2010)
Askari S, Halladj R, Sohrabi M, Microporous Mesoporous Mater., 163, 334 (2012)
Zhang L, Bates J, Chen DG, Nie HY, Huang Y, J. Phys. Chem. C, 115, 22309 (2011)
Nawaz Z, Wei F, J. Ind. Eng. Chem., 16(5), 774 (2010)
Nawaz Z, Tang X, Chu Y, Wei F, Chin. J. Catal., 31, 552 (2010)
Soler-illia GJD, Sanchez C, Lebeau B, Patarin J, Chem. Rev., 102(11), 4093 (2002)
Xue Z, Zhang T, Ma JG, Miao H, Fan W, Zhang Y, Li R, Microporous Mesoporous Mater., 151, 271 (2012)
Kirschhock CEA, Kremer SPB, Vermant J, Van Tandeloo G, Jacob PA, Martens JA, Chemistry-a European Journal, 11, 4306 (2005).
Chen LH, Li XY, Rooke JC, Zhang YH, Yang XY, Tang Y, Xiao FS, Su BL, J. Mater. Chem., 22, 17381 (2012)
Cui Y, Zhang Q, He J, Wang Y, Wei F, Particuology, 11, 468 (2013)
Schmidt F, Paasch S, Brunner E, Kaskel S, Microporous Mesoporous Mater., 164, 214 (2012)
Kong LT, Jiang Z, Zhao JG, Liu JC, Shen BX, Catal. Lett., 144(9), 1609 (2014)
Lobera MP, Tellez C, Herguido J, Menendez M, Appl. Catal. A: Gen., 349(1-2), 156 (2008)
Treacy MM, Higgins JB, Collection of Simulated XRD Powder Patterns for Zeolites Fifth (5th) Revised Ed., Elsevier (2007).
Guo W, Luo GS, Wang YJ, J. Colloid Interface Sci., 271(2), 400 (2004)
Sing KS, Pure Appl. Chem., 57, 603 (1985)
Nawaz Z, Tang X, Wang Y, Wei F, Ind. Eng. Chem. Res., 49, 1274 (2009)
Nawaz Z, Xiaoping T, Fei W, Korean J. Chem. Eng., 26(6), 1528 (2009)
Nawaz Z, Tang X, Zhang Q, Wang D, Fei W, Catal. Commun., 10, 1925 (2009)
Fattahi M, Khorasheh F, Sahebdelfar S, Zangeneh FT, Ganji K, Saeedzad M, Scientia Iranica, 18, 1377 (2009)
Epelde E, Ibanez M, Aguayo AT, Gayubo AG, Bilbao J, Castano P, Microporous Mesoporous Mater., 195, 284 (2014)
Brevoord E, Pouwels AC, Olthof FPP, Wijngaards HNJ, O’Connor P, Am. Chem. Soc., 25, 340 (1996)
Annaland TV, Kuipers JAM, van Swaaij WPM, Catal. Today, 66(2-4), 427 (2001)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로