ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 5, 2014
Accepted November 17, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of the TiO2 phase and loading on oxygen reduction reaction activity of PtCo/C catalysts in proton exchange membrane fuel cells

1Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand 2Center of Excellence on Petrochemical and Materials Technology (PETRO-MAT), Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand 3Laboratoire de Génie Chimique, UMR 5503 CNRS/ENSIACET/INPT, 4 Allee Emile Monso-CS 44362 31030 Toulouse Cedex 4, France
mali.h@chula.ac.th
Korean Journal of Chemical Engineering, July 2015, 32(7), 1305-1313(9), 10.1007/s11814-014-0340-8
downloadDownload PDF

Abstract

We investigated the effect of the TiO2 phase, as either pure rutile (TiO2(R)) or a 4 : 1 (w/w) anatase: rutile ratio (TiO2(AR)), and the loading on the activity of PtCo/C catalyst in the oxygen reduction reaction (ORR) in a proton exchange membrane (PEM) fuel cell. The incorporation of the different phases and loading of TiO2 on the PtCo/C catalyst did not affect the alloy properties or the crystalline size of the PtCo/C catalyst, but affected importantly the electrochemical surface area (ESA), conductivity of catalyst layer and the water management ability. The presence of TiO2(AR) at appropriate quantity can decrease the mass transport limitation as well as the ohmic resistance of catalyst layer. As a result, the optimum loading of TiO2(AR) used to incorporated in the layer of PtCo/C catalyst was 0.06mg/cm2. At this content, the TiO2(AR)-PtCo/C catalyst provided the highest current density of 438 mA/cm2 at 0.6V at atmospheric pressure in PEM fuel cell and provided the kinetic current in acid solution of 20.53 mA/cm2. In addition, the presence of TiO2(AR) did not alter the ORR electron pathway of PtCo/C catalyst. The electron pathway of ORR of TiO2(AR)-PtCo/C was still the four-electron pathway.

References

Lin JH, Chen WH, Su YJ, Ko TH, Fuel, 87(12), 2420 (2008)
Tang Y, Yuan W, Pan MQ, Li ZT, Chen GQ, Li Y, Appl. Energy, 87(4), 1410 (2010)
Zhang XQ, Guo JC, Chen JC, Energy, 35(12), 5294 (2010)
Bezerra CWB, Zhang L, Liu HS, Lee KC, Marques ALB, Marques EP, Wang HJ, Zhang JJ, J. Power Sources, 173(2), 891 (2007)
Trongchuankij W, Pruksathorn K, Hunsom M, Appl. Energy, 88(3), 974 (2011)
Kocha SS, Electrochemical degradation: Electrocatalyst and support durability, Polymer electrolyte fuel cell degradation. In: Mench MM, Kumbur EC, Nejat Veziroglu T (Eds.) Massachusetts, Elsevier (2011).
Vante NA, Tributsch H, Nature, 323, 431 (1986)
Fernandez JL, Raghuveer V, Manthiram A, Bard AJ, J. Am. Chem. Soc., 127(38), 13100 (2005)
Bagotsky VS, Fuel cells, Problems and Solution. Chichester, UK, Wiley (2009).
Yongjun F, Nicolas AV, Phys. Status Solidi B, 245, 1792 (2008)
Zhang L, Zhang JJ, Wilkinson DP, Wang HJ, J. Power Sources, 156(2), 171 (2006)
Baresel D, Sarholz W, Scharner P, Bunsen-Ges JS, Phys. Chem. Chem. Phys., 78, 608 (1974)
Susac D, Sode A, Zhu L, Wong PC, Teo M, Bizzotto D, Mitchell KAR, Parsons PR, Campbell SA, J. Phys. Chem. B, 110, 10760 (2006)
Lee K, Zhang L, Zhang J, Electrochem. Commun., 9, 1704 (2007)
Zhong H, Zhang H, Liu G, Liang Y, Hu J, Yi B, Electrochem. Commun., 8, 707 (2006)
Zhong HX, Zhang HM, Liang YM, Zhang JL, Wang MR, Wang XL, J. Power Sources, 164(2), 572 (2007)
Charreteur F, Jaouen F, Ruggeri S, Dodelet JP, Electrochim. Acta, 53(6), 2925 (2008)
Wang X, Lee JS, Zhu Q, Liu L, Wang Y, Dai S, Chem. Mater., 22, 2178 (2010)
Kim JH, Ishihara A, Mitsushima S, Kamiya N, Ota KI, Chem. Lett., 36(4), 514 (2007)
Bezerra CWB, Zhang L, Lee KC, Liu HS, Zhang JL, Shi Z, Marques ALB, Marques EP, Wu SH, Zhang JJ, Electrochim. Acta, 53(26), 7703 (2008)
Gojkovic SL, Gupta S, Savinell RF, Electrochim. Acta, 45(6), 889 (1999)
Contamin O, Debiemme-Chouvy C, Savy M, Scarbeck G, J. New Mater Electrochem. Syst., 3, 67 (2000)
Schulenburg H, Stankov S, Schunemann V, Radnik J, Dorbandt I, Fiechter S, Bogdanoff P, Tributsch H, J. Phys. Chem. B, 107(34), 9034 (2003)
Medard C, Lefevre M, Dodelet JP, Jaouen F, Lindbergh G, Electrochim. Acta, 51(16), 3202 (2006)
Baker R, Wilkinson DP, Zhang JJ, Electrochim. Acta, 53(23), 6906 (2008)
Pylypenko S, Mukherjee S, Olson TS, Atanassov P, Electrochim. Acta, 53(27), 7875 (2008)
Koslowski UI, Abs-Wurmbach I, Fiechter S, Bogdanoff P, J. Phys. Chem. C, 112, 15356 (2008)
Herrmann I, Kramm UI, Fiechter S, Bogdanoff P, Electrochim. Acta, 54(18), 4275 (2009)
Jalan V, Taylor EJ, J. Electrochem. Soc., 130, 2299 (1983)
Paffett MT, Berry GJ, Gottesfeld S, J. Electrochem. Soc., 135, 1431 (1988)
Beard BC, Ross PN, J. Electrochem. Soc., 137, 3368 (1990)
Toda T, Igarashi H, Uchida H, Watanabe M, J. Electrochem. Soc., 146, 3750 (1993)
Elezovic NR, Babic BM, Radmilovic VR, Vracar LM, Krstajic NV, Electrochim. Acta, 54(9), 2404 (2009)
Bauer A, Song CJ, Ignaszak A, Hui R, Zhang JJ, Chevallier L, Jones D, Roziere J, Electrochim. Acta, 55(28), 8365 (2010)
Huang SY, Ganesan P, Popov BN, Appl. Catal. B: Environ., 96(1-2), 224 (2010)
Chisaka M, Ishihara A, Ota K, Muramoto H, Electrochim. Acta, 113, 735 (2013)
Limpattayanate S, Hunsom M, J. Solid State Electrochem., 17, 1221 (2013)
Huang SY, Ganesan P, Popov BN, Appl. Catal. B: Environ., 102, 102 (2011)
Fugane K, Mori T, Ou DR, Suzuki A, Yoshikawa H, Masuda T, Uosaki K, Yamashita Y, Ueda S, Kobayashi K, Okazaki N, Matolinova I, Matolin V, Electrochim. Acta, 56(11), 3874 (2011)
Vuk AS, Jese R, Orel B, Drazic G, Int. J. Photoenergy, 7, 163 (2005)
Thanasilp S, Hunsom M, Electrochim. Acta, 56(3), 1164 (2011)
Trongchuankij W, Poochinda K, Pruksathorn K, Hunsom M, Renew. Energy, 12, 2839 (2010)
Yin SB, Mu SC, Lv HF, Cheng NAC, Pan M, Fu ZY, Appl. Catal. B: Environ., 93(3-4), 233 (2010)
Ungar T, Gubieza J, Tichy G, Pantea C, Zerda TW, Compos. Pt. A-Appl. Sci. Manuf., 36, 431 (2005)
Ra Y, Lee J, Kim I, Bong S, Kima H, J. Power Sources, 187(2), 363 (2009)
Wang ZB, Yin GP, Shi PF, Sun YC, Electrochem. Solid State Lett., 9(1), A13 (2006)
Lopes T, Antolini E, Gonzalez ER, Int. J. Hydrog. Energy, 33(20), 5563 (2008)
Fujishima A, Hashimoto K, Watanabe T, TiO2 Photocatalysis, Fundamentals and Applications, Tokyo Japan, BKC Inc. (1990).
Eppler AM, Ballard IN, Nelson J, Physica E, 14, 197 (2002)
Pomoni K, Sofianou MV, Georgakopoulos T, Boukos N, Trapalis C, J. Alloy. Compd., 548, 194 (2013)
Kim J, Lee SM, Srinivasan S, Chamberlin CE, J. Electrochem. Soc., 142(8), 2670 (1995)
Antolini E, Giorgi L, Pozio A, Passalacqua E, J. Power Sources, 77(2), 136 (1999)
Santiago EI, Isidoro RA, Dresch MA, Matos BR, Linardi M, Fonseca FC, Electrochim. Acta, 54(16), 4111 (2009)
Liu ZL, Guo B, Huang JC, Hong L, Han M, Gan LM, J. Power Sources, 157(1), 207 (2006)
Bard AJ, Faulkner LR, Electrochemical methods: Fundamentals and applications, 2nd Ed. New York, Wiley (2000).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로