Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 20, 2014
Accepted October 23, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Reduction of fatty acid flux at low temperature led to enhancement of β-carotene biosynthesis in recombinant Saccharomyces cerevisiae
Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China 1Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, P. R. China
Korean Journal of Chemical Engineering, July 2015, 32(7), 1354-1360(7), 10.1007/s11814-014-0318-6
Download PDF
Abstract
Transferring the recombinant S. cerevisiae T73-63 from 30 oC to 4 oC resulted in 41.4% increment of β-carotene concentration (3.96mg/g dry cell weight) relative to that of 30 oC, which was accompanied with the accumulation of fatty acid and ergosterol. The comparisons of the transcriptional levels of mevalonate pathway genes indicated that the expressions of HMG1, ERG9, ERG19, ERG20 and IDI1 at 4 oC were all higher than those of 30 oC, respectively. This suggested that increased transcriptions of mevalonate pathway genes contribute to the improvement of β-carotene production at low temperature. We also found that supplementation of 30mg/L triclosan, an inhibitor of fatty acid synthesis, led to further 28.3% enhancement of β-carotene concentration (4.94mg/g DCW), which was 18.8% higher than that of 30 oC with the same concentration of triclosan. The higher expressional levels of HMG, ERG19 and ERG20 and the simultaneous increment of ergosterol content (17.8%) suggested that more carbon source was transferred from fatty acid synthesis to mevalonate pathway under the circumstance of appropriately blocking fatty acid synthesis at low temperature (4 oC), which resulted in a higher increment of β-carotene production compared to that of 30 oC. The results of this study collectively suggest that the combination of reducing temperature and adding fatty acid synthesis inhibitors is a potential approach to improve the production of desirable isoprenoid compounds such as carotenoids.
References
Palozza P, Krinsky NI, Methods Enzymol., 213, 403 (1992)
Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, Oh DK, Keasling JD, Kim SW, J. Biotechnol., 140, 218 (2009)
Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, Berg JA, van Ooyen AJ, Appl. Environ. Microbiol., 73, 4342 (2007)
Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, Misawa N, Appl. Environ. Microbiol., 64, 2676 (1998)
Yan GL, Wen KR, Duan CQ, Curr. Microbiol., 64(2), 159 (2012)
Luo HH, Niu YY, Duan CQ, Su HJ, Yan GL, Process Biochem., 48, 195 (2013)
Reyes LH, Gomez JM, Kao KC, Metab. Eng., 21, 26 (2014)
Shi F, Zhan WB, Li YF, Wang XY, World J. Microbiol. Biotechnol., 30, 125 (2014)
Tronchoni J, Rozes N, Querol A, Guillamon JM, Int. J. Food Microbiol., 155, 191 (2012)
Sakamoto T, Murata N, Curr. Opin. Microbiol., 5, 206 (2002)
Yan GL, Liang HY, Duan CQ, Han BZ, Curr. Microbiol., 64(2), 152 (2012)
Shang F, Wen SH, Wang X, Tan TW, J. Biotechnol., 122, 285 (2006)
Zhang FZ, Ouellet M, Batth TS, Adams PD, Petzold CJ, Mukhopadhyay A, Keasling JD, Metab. Eng., 14, 653 (2012)
Cao SN, Zhang XW, Ye NH, Fan X, Mou SL, Xu D, Liang CW, Wang YT, Wang WQ, Biochem. Biophys. Res. Commun., 424(1), 118 (2012)
Du H, Wu N, Chang Y, Li XH, Xiao JH, Xiong LZ, Plant Mol. Biol., 83, 475 (2013)
Livak KJ, Schmittgen TD, Methods, 25, 402 (2001)
Maury J, Asadollahi MA, Moller K, Clark A, Nielsen J, Adv. Biochem. Eng. Biotechnol., 100, 19 (2005)
Tokuhiro K, Muramatsu M, Ohto C, Kawaguchi T, Obata S, Muramoto N, Hirai M, Takahashi H, Kondo A, Sakuradani E, Shimizu S, Appl. Environ. Microbiol., 75, 5536 (2009)
Panadero J, Pallotti C, Rodriguez-Vargas S, Randez-Gil F, Prieto JA, J. Biol. Chem., 281, 4638 (2006)
Miao LL, Chi S, Tang YC, Su Z, Yin T, Guan G, Li Y, FEMS Yeast. Res., 11, 192 (2011)
Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO, J. Biol. Chem., 274, 11110 (1999)
Lund ED, Soudant P, Chu FLE, Harvey E, Bolton S, Flowers A, Dis. Aquat. Org., 67, 217 (2005)
Xie WP, Liu M, Lv XM, Lu WQ, Gu JL, Yu HW, Biotechnol. Bioeng., 111(1), 125 (2014)
Beltran G, Novol M, Leberre V, Sokol S, Labourdette D, Guillamon J, Mas A, Francois J, Rozes N, FEMS Yeast. Res., 6, 1167 (2006)
Nagy G, Farkas A, Csernetics A, Bencsik O, Szekeres A, Nyilasi I, Vagvolgyi C, Papp T, BMC Microbiol., 14, 93 (2014)
Van LTA, Lin YH, Miller CL, Karna SL, Chambers JP, Seshu J, PLoS ONE, 7(5), e38171. DOI:10.1371/journal.pone.0038171(2012).
Celekli A, Donmez G, World J. Microbiol. Biotechnol., 22, 183 (2006)
Orosa M, Franqueira D, Cid A, Abalde J, Bioresour. Technol., 96(3), 373 (2005)
Xu F, Yuan QP, Zhu Y, Process Biochem., 42, 289 (2007)
Yadav VG, Mey MD, Lim CG, Ajikumar PK, Stephanopoulos G, Metab. Eng., 14, 233 (2012)
Keasling JD, Metab. Eng., 14, 189 (2012)
Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, Oh DK, Keasling JD, Kim SW, J. Biotechnol., 140, 218 (2009)
Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, Berg JA, van Ooyen AJ, Appl. Environ. Microbiol., 73, 4342 (2007)
Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, Misawa N, Appl. Environ. Microbiol., 64, 2676 (1998)
Yan GL, Wen KR, Duan CQ, Curr. Microbiol., 64(2), 159 (2012)
Luo HH, Niu YY, Duan CQ, Su HJ, Yan GL, Process Biochem., 48, 195 (2013)
Reyes LH, Gomez JM, Kao KC, Metab. Eng., 21, 26 (2014)
Shi F, Zhan WB, Li YF, Wang XY, World J. Microbiol. Biotechnol., 30, 125 (2014)
Tronchoni J, Rozes N, Querol A, Guillamon JM, Int. J. Food Microbiol., 155, 191 (2012)
Sakamoto T, Murata N, Curr. Opin. Microbiol., 5, 206 (2002)
Yan GL, Liang HY, Duan CQ, Han BZ, Curr. Microbiol., 64(2), 152 (2012)
Shang F, Wen SH, Wang X, Tan TW, J. Biotechnol., 122, 285 (2006)
Zhang FZ, Ouellet M, Batth TS, Adams PD, Petzold CJ, Mukhopadhyay A, Keasling JD, Metab. Eng., 14, 653 (2012)
Cao SN, Zhang XW, Ye NH, Fan X, Mou SL, Xu D, Liang CW, Wang YT, Wang WQ, Biochem. Biophys. Res. Commun., 424(1), 118 (2012)
Du H, Wu N, Chang Y, Li XH, Xiao JH, Xiong LZ, Plant Mol. Biol., 83, 475 (2013)
Livak KJ, Schmittgen TD, Methods, 25, 402 (2001)
Maury J, Asadollahi MA, Moller K, Clark A, Nielsen J, Adv. Biochem. Eng. Biotechnol., 100, 19 (2005)
Tokuhiro K, Muramatsu M, Ohto C, Kawaguchi T, Obata S, Muramoto N, Hirai M, Takahashi H, Kondo A, Sakuradani E, Shimizu S, Appl. Environ. Microbiol., 75, 5536 (2009)
Panadero J, Pallotti C, Rodriguez-Vargas S, Randez-Gil F, Prieto JA, J. Biol. Chem., 281, 4638 (2006)
Miao LL, Chi S, Tang YC, Su Z, Yin T, Guan G, Li Y, FEMS Yeast. Res., 11, 192 (2011)
Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO, J. Biol. Chem., 274, 11110 (1999)
Lund ED, Soudant P, Chu FLE, Harvey E, Bolton S, Flowers A, Dis. Aquat. Org., 67, 217 (2005)
Xie WP, Liu M, Lv XM, Lu WQ, Gu JL, Yu HW, Biotechnol. Bioeng., 111(1), 125 (2014)
Beltran G, Novol M, Leberre V, Sokol S, Labourdette D, Guillamon J, Mas A, Francois J, Rozes N, FEMS Yeast. Res., 6, 1167 (2006)
Nagy G, Farkas A, Csernetics A, Bencsik O, Szekeres A, Nyilasi I, Vagvolgyi C, Papp T, BMC Microbiol., 14, 93 (2014)
Van LTA, Lin YH, Miller CL, Karna SL, Chambers JP, Seshu J, PLoS ONE, 7(5), e38171. DOI:10.1371/journal.pone.0038171(2012).
Celekli A, Donmez G, World J. Microbiol. Biotechnol., 22, 183 (2006)
Orosa M, Franqueira D, Cid A, Abalde J, Bioresour. Technol., 96(3), 373 (2005)
Xu F, Yuan QP, Zhu Y, Process Biochem., 42, 289 (2007)
Yadav VG, Mey MD, Lim CG, Ajikumar PK, Stephanopoulos G, Metab. Eng., 14, 233 (2012)
Keasling JD, Metab. Eng., 14, 189 (2012)