Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 11, 2014
Accepted November 23, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Computational fluid dynamics modeling and analysis of Pd-based membrane module for CO2 capture from H2/CO2 binary gas mixture
1Department of Energy Systems Research, Ajou University, Suwon 443-749, Korea 2Clean Fuel Department, Korea Institute of Energy Research, Daejeon 305-343, Korea 3Energy Materials Center, Korea Institute of Energy Research, Daejeon 305-343, Korea 4Department of Chemical Engineering, Ajou University, Suwon 443-749, Korea
mjpark@ajou.ac.kr
Korean Journal of Chemical Engineering, July 2015, 32(7), 1414-1421(8), 10.1007/s11814-014-0346-2
Download PDF
Abstract
A Pd-based membrane module for the capture of CO2 from a H2/CO2 binary gas mixture was considered, and computational fluid dynamics modeling was used to predict the module performance. Detailed models of momentum and mass balances, including local flux as a function of local linear velocity, satisfactorily described CO2 fraction in a retentate tube when compared to the experimental data under various feed flow rates. By using the model, several cases having different geometries, including the location and diameter of feed tube and the number and location of the feed and retentate tubes, were considered. Among tested geometries, the case of two feed tubes with each offset by an angle, θ, of 45o from the center line, and a feed tube diameter of 2.45mm showed the increase of the feed flow rate up to 11.80% compared to the reference case while a CO2 fraction of 90% in the retentate, which was the criterion for effective CO2 capture in the present study, was guaranteed. This would result in a plausible reduction in capital expenditures for the CO2 capture process.
References
D’Alessandro DM, Smit B, Long JR, Angew. Chem.-Int. Edit., 49, 6058 (2010)
Ryi SK, Park JS, Hwang KR, Lee CB, Lee SW, Int. J. Hydrog. Energy, 36(21), 13769 (2011)
Hwang KR, Lee CB, Ryi SK, Park JS, Int. J. Hydrog. Energy, 37(8), 6626 (2012)
Hwang KR, Lee SW, Ryi SK, Kim DK, Kim TH, Park JS, Fuel Process. Technol., 106, 133 (2013)
Peters TA, Kaleta T, Stange M, Bredesen R, J. Membr. Sci., 383(1-2), 124 (2011)
Miguel CV, Mendes A, Tosti S, Madeira LM, Int. J. Hydrog. Energy, 37(17), 12680 (2012)
Chen WH, Syu WZ, Hung CI, Lin YL, Yang CC, Int. J. Hydrog. Energy, 38(2), 1145 (2013)
Ryi SK, Park JS, Kim SH, Cho SUH, Hwang KR, Kim DW, Kim HG, J. Membr. Sci., 297(1-2), 217 (2007)
Takaba H, Nakao S, J. Membr. Sci., 249(1-2), 83 (2005)
Caravella A, Barbieri G, Drioli E, Chem. Eng. Sci., 63(8), 2149 (2008)
Choi JH, Park MJ, Kim JN, Ko Y, Lee SH, Baek I, Korean J. Chem. Eng., 30(6), 1187 (2013)
Boon J, Li H, Dijkstra JW, Pieterse JAZ, Energy Procedia, 4, 699 (2011)
Coroneo M, Montante G, Catalano J, Paglianti A, J. Membr. Sci., 343(1-2), 34 (2009)
Chen WH, Syu WZ, Hung CI, Int. J. Hydrog. Energy, 36(22), 14734 (2011)
Brenner SC, Scott LR, The mathematical theory of finite element methods, 2nd Ed. Springer-Verlag, New York (2002).
Celebi ME, Celiker F, Kingravi HA, Pattern Recognition, 44, 278 (2011)
Fuller EN, Schettler PD, Giddings JC, Ind. Eng. Chem., 58, 18 (1966)
Fuller EN, Ensley K, Giddings JC, J. Phys. Chem., 73, 3679 (1969)
Chen WH, Hsu PC, Int. J. Hydrog. Energy, 36(15), 9355 (2011)
Mardilovich IP, Engwall E, Ma YH, Desalination, 144(1-3), 85 (2002)
Li AW, Liang WQ, Hughes R, Thin Solid Films, 350(1-2), 106 (1999)
Itoh N, Xu WC, Appl. Catal. A: Gen., 107(1), 83 (1993)
Lin YM, Liu SL, Chuang CH, Chu YT, Catal. Today, 82(1-4), 127 (2003)
Chen WH, Hsu PC, Lin BJ, Int. J. Hydrog. Energy, 35(11), 5410 (2010)
Gao HY, Lin JYS, Li YD, Zhang BQ, J. Membr. Sci., 265(1-2), 142 (2005)
Roa F, Way JD, McCormick RL, Paglieri SN, Chem. Eng. J., 93(1), 11 (2003)
Liang WQ, Hughes R, Catal. Today, 104(2-4), 238 (2005)
Nair BKR, Choi J, Harold MP, J. Membr. Sci., 288(1-2), 67 (2007)
Wang LS, Yoshiie R, Uemiya S, J. Membr. Sci., 306(1-2), 1 (2007)
Wang D, Tong HH, Xu HY, Matsumura Y, Catal. Today, 93-95, 689 (2004)
Tong JH, Matsumura Y, Suda H, Haraya K, Sep. Purif. Technol., 46(1-2), 1 (2005)
Dittmeyer R, Hollein V, Daub K, J. Mol. Catal. A-Chem., 173(1-2), 135 (2001)
Bosko ML, Yepes D, Irusta S, Eloy P, Ruiz P, Lombardo EA, Cornaglia LM, J. Membr. Sci., 306(1-2), 56 (2007)
Chi YH, Yen PS, Jeng MS, Ko ST, Lee TC, Int. J. Hydrog. Energy, 35(12), 6303 (2010)
Ryi SK, Park JS, Hwang KR, Lee CB, Lee SW, Int. J. Hydrog. Energy, 36(21), 13769 (2011)
Hwang KR, Lee CB, Ryi SK, Park JS, Int. J. Hydrog. Energy, 37(8), 6626 (2012)
Hwang KR, Lee SW, Ryi SK, Kim DK, Kim TH, Park JS, Fuel Process. Technol., 106, 133 (2013)
Peters TA, Kaleta T, Stange M, Bredesen R, J. Membr. Sci., 383(1-2), 124 (2011)
Miguel CV, Mendes A, Tosti S, Madeira LM, Int. J. Hydrog. Energy, 37(17), 12680 (2012)
Chen WH, Syu WZ, Hung CI, Lin YL, Yang CC, Int. J. Hydrog. Energy, 38(2), 1145 (2013)
Ryi SK, Park JS, Kim SH, Cho SUH, Hwang KR, Kim DW, Kim HG, J. Membr. Sci., 297(1-2), 217 (2007)
Takaba H, Nakao S, J. Membr. Sci., 249(1-2), 83 (2005)
Caravella A, Barbieri G, Drioli E, Chem. Eng. Sci., 63(8), 2149 (2008)
Choi JH, Park MJ, Kim JN, Ko Y, Lee SH, Baek I, Korean J. Chem. Eng., 30(6), 1187 (2013)
Boon J, Li H, Dijkstra JW, Pieterse JAZ, Energy Procedia, 4, 699 (2011)
Coroneo M, Montante G, Catalano J, Paglianti A, J. Membr. Sci., 343(1-2), 34 (2009)
Chen WH, Syu WZ, Hung CI, Int. J. Hydrog. Energy, 36(22), 14734 (2011)
Brenner SC, Scott LR, The mathematical theory of finite element methods, 2nd Ed. Springer-Verlag, New York (2002).
Celebi ME, Celiker F, Kingravi HA, Pattern Recognition, 44, 278 (2011)
Fuller EN, Schettler PD, Giddings JC, Ind. Eng. Chem., 58, 18 (1966)
Fuller EN, Ensley K, Giddings JC, J. Phys. Chem., 73, 3679 (1969)
Chen WH, Hsu PC, Int. J. Hydrog. Energy, 36(15), 9355 (2011)
Mardilovich IP, Engwall E, Ma YH, Desalination, 144(1-3), 85 (2002)
Li AW, Liang WQ, Hughes R, Thin Solid Films, 350(1-2), 106 (1999)
Itoh N, Xu WC, Appl. Catal. A: Gen., 107(1), 83 (1993)
Lin YM, Liu SL, Chuang CH, Chu YT, Catal. Today, 82(1-4), 127 (2003)
Chen WH, Hsu PC, Lin BJ, Int. J. Hydrog. Energy, 35(11), 5410 (2010)
Gao HY, Lin JYS, Li YD, Zhang BQ, J. Membr. Sci., 265(1-2), 142 (2005)
Roa F, Way JD, McCormick RL, Paglieri SN, Chem. Eng. J., 93(1), 11 (2003)
Liang WQ, Hughes R, Catal. Today, 104(2-4), 238 (2005)
Nair BKR, Choi J, Harold MP, J. Membr. Sci., 288(1-2), 67 (2007)
Wang LS, Yoshiie R, Uemiya S, J. Membr. Sci., 306(1-2), 1 (2007)
Wang D, Tong HH, Xu HY, Matsumura Y, Catal. Today, 93-95, 689 (2004)
Tong JH, Matsumura Y, Suda H, Haraya K, Sep. Purif. Technol., 46(1-2), 1 (2005)
Dittmeyer R, Hollein V, Daub K, J. Mol. Catal. A-Chem., 173(1-2), 135 (2001)
Bosko ML, Yepes D, Irusta S, Eloy P, Ruiz P, Lombardo EA, Cornaglia LM, J. Membr. Sci., 306(1-2), 56 (2007)
Chi YH, Yen PS, Jeng MS, Ko ST, Lee TC, Int. J. Hydrog. Energy, 35(12), 6303 (2010)