Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 10, 2014
Accepted November 23, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Formation of compositional gradient profiles by using shear-induced polymer migration phenomenon under Couette flow field
Functional Crystallization Center, Department of Chemical Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi 446-701, Korea 1Department of Chemical and Biomolecular Engineering (BK21+ Graduate Program), Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea 2Department of Applied Chemistry, Woosuk University, 443, Samrae-ro, Sangrae-eup, Wanju-gun, Jeonbuk 565-701, Korea
ookpark@kaist.ac.kr
Korean Journal of Chemical Engineering, July 2015, 32(7), 1422-1426(5), 10.1007/s11814-014-0344-4
Download PDF
Abstract
We investigated whether a graded-index profile, specified by the polymer compositional gradient, could be formed using shear-induced polymer migration phenomenon in a polymer solution. For the presented model system, we generated a shear flow by rotating a glass rod at the center of a polystyrene/methylmethacrylate (PS/MMA) solution and measured the degree of polymer migration by the shear flow field by examining the concentration of polymer solution along the radial direction from the rotating axis to the periphery. Through model experiments, we formed a compositional gradient and controlled its profile in the solution by varying the concentration of polymer solution, molecular weight of polymer, and shear rate. Finally, we solidfied the gradient profiles by the polymerization of the PS/MMA solution and confirmed that the gradient profiles were maintained with a compositional gradient twice larger than the mother PS/MMA solution.
References
Emslie C, J. Mater. Sci., 23, 2281 (1988)
Koike Y, Kanemitsh A, Nihei E, Ohtsuka Y, Appl. Opt., 33, 3394 (1994)
Sato M, Ishigure T, Koike Y, J. Lightwave Technol., 18, 952 (2000)
Ishigure T, Nihei E, Koike Y, Appl. Opt., 35, 2048 (1996)
Liu D, Zhao M, Li Y, Bian Z, Zhang L, Shang Y, Xia X, Zhang S, Yun D, Liu Z, Cao A, Huang C, ACS Nano, 6, 11027 (2012)
Lee J, Kim A, Cho SM, Chae H, Korean J. Chem. Eng., 29(3), 337 (2012)
Truong NTN, Monroe ML, Farva U, Anderson TJ, Park C, Korean J. Chem. Eng., 28(7), 1625 (2011)
Pan S, Yang Z, Chen P, Deng J, Li H, Peng H, Angew. Chem.-Int. Edit., 10.1002/anie.201402561 (2014)
Park CW, Lee BS, Walker JK, Choi WY, Ind. Eng. Chem. Res., 39(1), 79 (2000)
van Duijnhoven FGH, Bastiaansen CWM, Appl. Opt., 38, 1008 (1999)
Im SH, Suh DJ, Park OO, Cho H, Choi JS, Park JK, Hwang JT, Appl. Opt., 41, 1858 (2002)
Im SH, Suh DJ, Park OO, Cho H, Choi JS, Park JK, Hwang JT, Korean J. Chem. Eng., 19(3), 505 (2002)
Choi JS, Im SH, Song MY, Park OO, Cho H, Hwang JT, J. Appl. Polym. Sci., 95(5), 1100 (2005)
Mavrantzas VG, Beris AN, Phys. Rev. Lett., 69, 273 (1992)
Beris AN, Mavrantzas VG, J. Rheol., 38(5), 1235 (1994)
Apostolakis MV, Mavrantzas VG, Beris AN, J. Non-Newton. Fluid Mech., 102(2), 409 (2002)
Tsouka S, Dimakopoulos Y, Mavrantzas V, Tsamopoulos J, J. Rheol., 58(4), 911 (2014)
Macdonald MJ, Muller SJ, J. Rheol., 40(2), 259 (1996)
MacDonald MJ, Muller SJ, Rheol. Acta, 36(2), 97 (1997)
Criado-Sancho M, Jou D, Del Castillo LF, Casas-Vazquez J, Polymer, 41(23), 8425 (2000)
del Castillo LF, Criado-Sancho M, Jou D, Polymer, 41(7), 2633 (2000)
Koike Y, Kanemitsh A, Nihei E, Ohtsuka Y, Appl. Opt., 33, 3394 (1994)
Sato M, Ishigure T, Koike Y, J. Lightwave Technol., 18, 952 (2000)
Ishigure T, Nihei E, Koike Y, Appl. Opt., 35, 2048 (1996)
Liu D, Zhao M, Li Y, Bian Z, Zhang L, Shang Y, Xia X, Zhang S, Yun D, Liu Z, Cao A, Huang C, ACS Nano, 6, 11027 (2012)
Lee J, Kim A, Cho SM, Chae H, Korean J. Chem. Eng., 29(3), 337 (2012)
Truong NTN, Monroe ML, Farva U, Anderson TJ, Park C, Korean J. Chem. Eng., 28(7), 1625 (2011)
Pan S, Yang Z, Chen P, Deng J, Li H, Peng H, Angew. Chem.-Int. Edit., 10.1002/anie.201402561 (2014)
Park CW, Lee BS, Walker JK, Choi WY, Ind. Eng. Chem. Res., 39(1), 79 (2000)
van Duijnhoven FGH, Bastiaansen CWM, Appl. Opt., 38, 1008 (1999)
Im SH, Suh DJ, Park OO, Cho H, Choi JS, Park JK, Hwang JT, Appl. Opt., 41, 1858 (2002)
Im SH, Suh DJ, Park OO, Cho H, Choi JS, Park JK, Hwang JT, Korean J. Chem. Eng., 19(3), 505 (2002)
Choi JS, Im SH, Song MY, Park OO, Cho H, Hwang JT, J. Appl. Polym. Sci., 95(5), 1100 (2005)
Mavrantzas VG, Beris AN, Phys. Rev. Lett., 69, 273 (1992)
Beris AN, Mavrantzas VG, J. Rheol., 38(5), 1235 (1994)
Apostolakis MV, Mavrantzas VG, Beris AN, J. Non-Newton. Fluid Mech., 102(2), 409 (2002)
Tsouka S, Dimakopoulos Y, Mavrantzas V, Tsamopoulos J, J. Rheol., 58(4), 911 (2014)
Macdonald MJ, Muller SJ, J. Rheol., 40(2), 259 (1996)
MacDonald MJ, Muller SJ, Rheol. Acta, 36(2), 97 (1997)
Criado-Sancho M, Jou D, Del Castillo LF, Casas-Vazquez J, Polymer, 41(23), 8425 (2000)
del Castillo LF, Criado-Sancho M, Jou D, Polymer, 41(7), 2633 (2000)