Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 10, 2015
Accepted April 14, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Hydrodynamics of a hybrid circulating fluidized bed reactor with a partitioned loop seal system
Dal-Hee Bae
Minyoung Yun1
Jong-Ho Moon†
Gyoung Tae Jin
Dowon Shun
Chan Seung Park1
Joseph M. Norbeck1
Low Carbon Process Laboratory, Korea Institute of Energy Research, 102, Gajeong-ro, Yuseong-gu, Daejeon 305-343, Korea 1Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92521, USA
moon_jongho@kier.re.kr
Korean Journal of Chemical Engineering, July 2015, 32(7), 1440-1446(7), 10.1007/s11814-015-0081-3
Download PDF
Abstract
A circulating fluidized bed (CFB) with a hybrid design has been developed and optimized for steam hydrogasification. The hybrid CFB is composed of a bubbling fluidized bed (BFB) type combustor and a fast fluidized bed (FB) type gasifier. Char is burnt in the combustor and the generated heat is supplied to the gasifier along with the bed materials. Two different types of fluidized beds are connected to each other with a newly developed partitioned loop seal to avoid direct contact between two separate gas streams flowing in each fluidized bed. Gas mixing tests were carried out with Air and Argon in a cold model hybrid CFB to test the loop seal efficiency. Increase in solid inventory in the loop seal can improve the gas separation efficiency. It can be realized at higher gas velocity in fast bed and with higher solid inventory in the loop seal system. In addition, bed hydrodynamics was investigated with varying gas flow conditions and particle sizes in order to obtain a full understanding of changes of solid holdup in the FB. The solid holdup in the FB increased with increasing gas velocity in the BFB. Conversely, increase in gas velocity in the FB contributed to reducing the solid holdup in the FB. It was observed that changing the particle size of bed material does not have a big impact on hydrodynamic parameters.
References
Lv PM, Xiong ZH, Chang J, Wu CZ, Chen Y, Zhu JX, Bioresour. Technol., 95(1), 95 (2004)
Anne-Gaelle C, Coal Geology, 65, 191 (2006)
Goo J, Seo M, Park D, Kim S, Lee S, Lee J, Song B, J. Chem. Eng. Jpn., 41, 686 (2006)
Karmakar MK, Datta AB, Adv. Powder Technol., 21(5), 521 (2010)
Murakami T, Asai M, Suzuki Y, Adv. Powder Technol., 22(3), 449 (2011)
Murakami T, Yang T, Asai M, Suzuki Y, Adv. Powder Technol., 22(3), 433 (2011)
Kim YJ, Lee JM, Kim SD, Fuel, 76(11), 1067 (1997)
Wee SK, Chok VS, Srinivasakannan C, Chua HB, Yan HM, Energy Fuels, 22(1), 61 (2008)
Jin G, Lee S, Park Y, Jo S, Moon J, Ryu H, ISOPE2010, Beijing, China (2010).
Moon JH, Park YC, Ryu HJ, Lee SY, Jin GT, Adv. Powder Technol., 24(6), 1086 (2013)
Moon J, Seo Y, Kang S, Lee S, Park Y, Ryu H, Jin G, CFB-10, Oregon, USA (2011).
Kaiser S, Loffler G, Bosch K, Hofbauer H, Chem. Eng. Sci., 58(18), 4215 (2003)
Raju ASK, Park CS, Norbeck JM, Fuel Process. Technol., 90(2), 330 (2009)
Shen LH, Zhang MY, Powder Technol., 97(2), 170 (1998)
Chyang C, Han Y, Chien C, J. Taiwan Inst. Chem. Eng., 41, 195 (2010)
Gayan P, Dediego LF, Adanez J, Powder Technol., 94(2), 163 (1997)
Mahmoudi S, Seville JPK, Baeyens J, Powder Technol., 203(2), 322 (2010)
Sane SU, Haynes HW, Agarwal PK, Chem. Eng. Sci., 51(7), 1133 (1996)
Mostoufi N, Chaouki J, Powder Technol., 114(1-3), 23 (2001)
Hamel S, Krumm W, Powder Technol., 120(1-2), 105 (2001)
Ross DP, Yan HM, Zhong ZP, Zhang DK, Fuel, 84(12-13), 1469 (2005)
Li TW, Zhang YM, Grace JR, Bi XT, AIChE J., 56(9), 2280 (2010)
Kumar A, Hodgson P, Fabijanic D, Gao WM, Adv. Powder Technol., 23(4), 485 (2012)
Kunii D, Levenspiel O, Fluidization Engineering, 2nd Ed. Butterworth-Heinemann (1991).
Anne-Gaelle C, Coal Geology, 65, 191 (2006)
Goo J, Seo M, Park D, Kim S, Lee S, Lee J, Song B, J. Chem. Eng. Jpn., 41, 686 (2006)
Karmakar MK, Datta AB, Adv. Powder Technol., 21(5), 521 (2010)
Murakami T, Asai M, Suzuki Y, Adv. Powder Technol., 22(3), 449 (2011)
Murakami T, Yang T, Asai M, Suzuki Y, Adv. Powder Technol., 22(3), 433 (2011)
Kim YJ, Lee JM, Kim SD, Fuel, 76(11), 1067 (1997)
Wee SK, Chok VS, Srinivasakannan C, Chua HB, Yan HM, Energy Fuels, 22(1), 61 (2008)
Jin G, Lee S, Park Y, Jo S, Moon J, Ryu H, ISOPE2010, Beijing, China (2010).
Moon JH, Park YC, Ryu HJ, Lee SY, Jin GT, Adv. Powder Technol., 24(6), 1086 (2013)
Moon J, Seo Y, Kang S, Lee S, Park Y, Ryu H, Jin G, CFB-10, Oregon, USA (2011).
Kaiser S, Loffler G, Bosch K, Hofbauer H, Chem. Eng. Sci., 58(18), 4215 (2003)
Raju ASK, Park CS, Norbeck JM, Fuel Process. Technol., 90(2), 330 (2009)
Shen LH, Zhang MY, Powder Technol., 97(2), 170 (1998)
Chyang C, Han Y, Chien C, J. Taiwan Inst. Chem. Eng., 41, 195 (2010)
Gayan P, Dediego LF, Adanez J, Powder Technol., 94(2), 163 (1997)
Mahmoudi S, Seville JPK, Baeyens J, Powder Technol., 203(2), 322 (2010)
Sane SU, Haynes HW, Agarwal PK, Chem. Eng. Sci., 51(7), 1133 (1996)
Mostoufi N, Chaouki J, Powder Technol., 114(1-3), 23 (2001)
Hamel S, Krumm W, Powder Technol., 120(1-2), 105 (2001)
Ross DP, Yan HM, Zhong ZP, Zhang DK, Fuel, 84(12-13), 1469 (2005)
Li TW, Zhang YM, Grace JR, Bi XT, AIChE J., 56(9), 2280 (2010)
Kumar A, Hodgson P, Fabijanic D, Gao WM, Adv. Powder Technol., 23(4), 485 (2012)
Kunii D, Levenspiel O, Fluidization Engineering, 2nd Ed. Butterworth-Heinemann (1991).