ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 31, 2014
Accepted May 16, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Reviews on drag reducing polymers

Department of Chemical Engineering, Curtin University Sarawak Campus, CDT 250, 98009 Miri, Sarawak, Malaysia
Korean Journal of Chemical Engineering, August 2015, 32(8), 1455-1476(22), 10.1007/s11814-015-0104-0
downloadDownload PDF

Abstract

Polymers are effective drag reducers owing to their ability to suppress the formation of turbulent eddies at low concentrations. Existing drag reduction methods can be generally classified into additive and non-additive techniques. The polymer additive based method is categorized under additive techniques. Other drag reducing additives are fibers and surfactants. Non-additive techniques are associated with the applications of different types of surfaces: riblets, dimples, oscillating walls, compliant surfaces and microbubbles. This review focuses on experimental and computational fluid dynamics (CFD) modeling studies on polymer-induced drag reduction in turbulent regimes. Other drag reduction methods are briefly addressed and compared to polymer-induced drag reduction. This paper also reports on the effects of polymer additives on the heat transfer performances in laminar regime. Knowledge gaps and potential research areas are identified. It is envisaged that polymer additives may be a promising solution in addressing the current limitations of nanofluid heat transfer applications.

References

Brostow W, J. Ind. Eng. Chem., 14(4), 409 (2008)
Toms BA, Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers, Proceedings of the 1st International Congress on Rheology (1949).
Burger ED, Munk WR, Wahl HA, J. Pet. Technol., 34, 377 (1982)
Liaw GC, Zakin JL, Patterson GK, AIChE J., 17, 391 (1971)
Peyser P, J. Appl. Polym. Sci., 17, 421 (1973)
Kostic M, Int. J. Heat Mass Transf., 37(S), 133 (1994)
Berman NS, Annu. Rev. Fluid Mech., 10, 47 (1978)
Oliver DR, Karim RB, Can. J. Chem. Eng., 49, 236 (1971)
Mena B, Best G, Bautista P, Sanchez T, Rheol. Acta, 17, 454 (1978)
Hartnett JP, Kostic M, Int. J. Heat Mass Transf., 28, 1147 (1985)
Gupta MK, Metzner AB, Hartnett JP, Int. J. Heat Mass Transf., 10, 1211 (1967)
Virk PS, Merrill EW, Mickley HS, Smith KA, Mollo-Christensen EL, J. Fluid Mech., 30, 305 (1967)
McComb WD, Rabie LH, AIChE J., 28, 547 (1982)
Sellin RHJ, Ollis M, Ind. Eng. Chem. Prod. Res. Dev., 22, 445 (1983)
Abubakar A, Al-Wahaibi T, Al-Wahaibi Y, Al-Hashmi AR, Al-Ajmi A, Chem. Eng. Res. Des., 92(11), 2153 (2014)
Hartnett JP, J. Heat Transf. -Trans. ASME, 114, 296 (1992)
Cho YI, Harnett JP, Non-Newtonian fluids in circular pipe flow, in Advances in Heat Transfer, Harnett JP, Thomas FI Eds., Elsevier, USA, 59 (1982).
Kwack EY, Hartnett JP, Cho YI, Warme - und Stoffubertragung, 16, 35 (1982)
Kwack EY, Hartnett JP, Int. Commun. Heat Mass Transf., 10, 451 (1983)
Kim NJ, Kim S, Lim SH, Chen K, Chun W, Int. Commun. Heat Mass Transf., 36, 1014 (2009)
Lumley JL, Annu. Rev. Fluid Mech., 1, 367 (1969)
Fleming DJ, Capillary Rheometry, Polymer Rheology’ 99 Conference: Approach to Quality Control for the Plastics and Rubber Industries (1999).
Dimitropoulos CD, Sureshkumar R, Beris AN, J. Non-Newton. Fluid Mech., 79(2-3), 433 (1998)
Bonn D, Yacine A, Christian W, Stephane D, Olivier C, J. Phys. Condens. Matter, 17, S1195 (2005)
Gillissen JJJ, Phys. Rev. E, 78, 046311 (2008)
Toonder JMJD, Hulsen MA, Kuiken GDC, Nieuwstadt FTM, J. Fluid Mech., 337, 193 (1997)
Min T, Yoo JY, Choi H, Joseph DD, J. Fluid Mech., 486, 213 (2003)
Tung TT, Ng KS, Hartnett JP, Lett. Heat. Mass Transf., 5, 59 (1978)
Virk PS, Mickley HS, Smith KA, J. Appl. Mech., 37, 488 (1970)
Poreh M, Paz U, Int. J. Heat Mass Transf., 11, 805 (1968)
Hartnett JP, Kwack EY, Int. J. Thermophys., 7, 53 (1986)
Debrule PM, Sabersky RH, Int. J. Heat Mass Transf., 17, 529 (1974)
Singh RP, Drag reduction, in Encyclopedia of Polymer Science and Technology, Kroschwitz JI Ed., John Wiley & Sons, Inc., New Jersey, 519 (2002).
Sellin RHJ, Hoyt JW, Scrivener O, J. Hydraulic Res., 20, 29 (1982)
Singh RP, Drag reduction, in Properties and Behavior of Polymers, Bailey J, Seidel A, Arndt E, Thomas S, Parrish K, Gonzalez D Eds., John Wiley & Sons, Inc., New Jersey, 254 (2011).
Toh KH, Ghajar AJ, Int. J. Heat Mass Transf., 31, 1261 (1988)
Gao SX, Hartnett JP, Int. Commun. Heat Mass Transf., 19, 673 (1992)
Shin SY, Cho YI, Int. J. Heat Mass Transf., 37(S), 19 (1994)
Hartnett JP, Kostic M, Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts, in Advances in Heat Transfer, Hartnett JP, Irvine JTF Eds., Academic Press, Inc., USA, 247 (1989).
Gingrich WK, Cho YI, Shyy W, Int. J. Heat Mass Transf., 35, 2823 (1992)
Escudier P, Smith S, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 457, 911 (2001).
Kostic M, Hartnett JP, Int. Commun. Heat Mass Transf., 12, 483 (1985)
Yang KS, Choi HJ, Kim CB, Kim IS, Jhon MS, Korean J. Chem. Eng., 11(1), 8 (1994)
Kim CA, Jo DS, Choi HJ, Kim CB, Jhon MS, Polym. Test, 20, 43 (2001)
Choi HJ, Kim CA, Jhon MS, Polymer, 40(16), 4527 (1999)
Kim CA, Kim JT, Lee K, Choi HJ, Jhon MS, Polymer, 41(21), 7611 (2000)
Lim ST, Choi HJ, Lee SY, So JS, Chan CK, Macromolecules, 36(14), 5348 (2003)
Lim ST, Choi HJ, Chan CK, Macromol. Rapid Commun., 26(15), 1237 (2005)
Kim JT, Kim CA, Zhang K, Jang CH, Choi HJ, Colloids Surf. A: Physicochem. Eng. Asp., 391, 125 (2011)
Sohn JI, Kim CA, Choi HJ, Jhon MS, Carbohydr. Polym., 45, 61 (2001)
Kim CA, Lim ST, Choi HJ, Sohn JI, Jhon MS, J. Appl. Polym. Sci., 83(13), 2938 (2002)
Matras Z, Malcher T, Gzyl-Malcher B, Thin Solid Films, 516(24), 8848 (2008)
Mohsenipour AA, Pal R, Can. J. Chem. Eng., 91(1), 190 (2013)
Ptasinski PK, Boersma BJ, Nieuwstadt FTM, Hulsen MA, Van Den Brule BHAA, Hunt JCR, J. Fluid Mech., 490, 251 (2003)
Terrapon VE, Lagrangian simulations of turbulent drag reduction by a dilute solution of polymers in a channel flow, Ph.D. Thesis, Stanford University (2005).
Dhotre MT, Ekambara K, Joshi JB, J. Chem. Eng. Jpn., 40(4), 304 (2007)
Escudier MP, Presti F, Smith S, J. Non-Newton. Fluid Mech., 81, 197 (1998)
Presti F, Investigation of transitional and turbulent pipe flow of non-Newtonian fluids, Ph.D. Thesis, University of Liverpool, UK (2000).
Naccache MF, Mendes PRS, Int. J. Heat Fluid Flow, 17, 613 (1996)
Dean B, Bhushan B, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 368, 4775 (2010)
Abdulbari HA, Yunus RM, Abdurahman NH, Charles A, J. Ind. Eng. Chem., 19(1), 27 (2013)
Garcia-Mayoral R, Jimenez J, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 369, 1412 (2011)
Huang JB, Ho CM, Microriblets for drag reduction, Smart Structures and Materials 1995: Smart Electronics (1995).
Walsh MJ, Drag characteristics of v-groove and transverse curvature riblets, in Viscous Flow Drag Reduction, G. R. Hough Ed., American Institute of Aeronautics and Astronautics, Washington, 168 (1980).
Walsh MJ, Riblets, in Viscous Drag Reduction in Boundary Layers, Bushnell DM, Hefner JN Eds., American Institute of Aeronautics and Astronautics, Washington, 203 (1990).
Liu CK, Klein S, Johnston J, An experimental study of turbulent boundary layer on rough walls, Stanford University, Department of Mechanical Engineering (1966).
Choi H, Moin P, Kim J, Phys. Fluids A: Fluid Dynamics, 3, 1892 (1991)
Chu DC, Karniadakis GE, J. Fluid Mech., 250, 1 (1993)
Choi KS, J. Fluid Mech., 208, 417 (1989)
Warsop C, Turbulent drag reduction methods - Current status and prospects for turbulent flow control, in Aerodynamic Drag Reduction Technologies: Proceedings of the CEAS/DragNet European Drag Reduction Conference, Thiede P Ed., Springer, Germany, 269 (2001).
Choi H, Moin P, Kim J, J. Fluid Mech., 255, 503 (1993)
Baron A, Quadrio M, Vigevano L, Int. J. Heat Fluid Flow, 14, 324 (1993)
Bacher E, Smith C, A combined visualization-anemometry study of the turbulent drag reducing mechanisms of triangular microgroove surface modifications, American Institute of Aeronautics and Astronautics, Shear Flow Control Conference (1985).
Alekseev VV, Gachechiladze IA, Kiknadze GI, Oleinikov VG, Tornado-like energy transer on three-dimensional concavities of reliefs-structure of self-organizing flow, their visualization, and surface streamlining mechanicms, in Transactions of the 2nd Russian Nat. Conf. of Heat Transfer, vol. 6, Heat Transfer Intensification Radiation and Complex Heat Transfer, Publishing House of Moscow Energy Institute (MEI), Moscow, 33 (1998).
Aoyama S, Golf ball dimple pattern, US Patent, 5,957,786 (1999).
Kasashima A, Golf ball, US Patent, 6,761,647 (2004).
Veldhuis LLM, Vervoort E, Drag effect of a dented surface in a turbulent flow, Proceedings of the 27th AIAA Applied Aerodynamics Conference (2009).
Lienhart H, Breuer M, Koksoy C, Int. J. Heat Fluid Flow, 29, 783 (2008)
Kim HM, Moon MA, Kim KY, Energy, 36(5), 3419 (2011)
Silva C, Marotta E, Fletcher L, J. Electronic Packaging, 129, 157 (2006)
Burgess NK, Oliveira MM, Ligrani PM, J. Heat Transf. -Trans. ASME, 125, 11 (2003)
Samad A, Lee KD, Kim KY, Heat Mass Transf., 45, 207 (2008)
Trujillo SM, David B, Kenneth B, Steven T, David B, Kenneth B, Turbulent boundary layer drag reduction using an oscillating wall, 4th Shear Flow Control Conference (1997).
Fang J, Lu L, Shao L, Sci. in China Series G: Phys. Mech. and Astronomy, 52, 1233 (2009)
Baron A, Quadrio M, Appl. Sci. Res., 55, 311 (1996)
Laadhari F, Skandaji L, Morel R, Phys. Fluids, 6, 3218 (1994)
Choi KS, Debisschop JR, Clayton BR, AIAA J., 36, 1157 (1998)
Choi KS, Clayton BR, Int. J. Heat Fluid Flow, 22, 1 (2001)
Choi KS, Phys. Fluids, 14, 2530 (2002)
Ricco P, Quadrio M, Int. J. Heat Fluid Flow, 29, 891 (2008)
Jung WJ, Mangiavacchi N, Akhavan R, Phys. Fluids A:Fluid Dynamics, 4, 1605 (1992)
Quadrio M, Ricco P, J. Fluid Mech., 521, 251 (2004)
Choi KS, Graham M, Phys. Fluids, 10, 7 (1998)
Kramer MO, J. American Society for Naval Engineers, 72, 25 (1960)
Puryear FW, Boundary layer control: Drag reduction by use of compliant coatings, David Taylor Model Basin Report No. 1668, Naval Surface Warfare Center (1962).
Nisewanger CR, Flow noise and drag measurements of vehicle with compliant coating, Report No. 8518 NOTS No. TP-3510, US Naval Ordnance Test Station (1964).
Ritter H, Messum L, Water tunnel measurements of turbulent skin friction on six different compliant surfaces of 1 ft length, Report No. ARL/N4/GHY/9/7, ARL/G/N9, British Admiralty Research Laboratory (1964).
Ritter H, Porteous J, Water tunnel measurements of skin friction on a compliant coating, Report No. ARL/N3/G/HY/9/7, British Admiralty Research Laboratory (1964).
Carpenter PW, Garrad AD, J. Fluid Mech., 155, 465 (1985)
Benjamin TB, J. Fluid Mech., 9, 513 (1960)
Betchov R, J. Ship Res., 4, 37 (1960)
Landahl MT, J. Fluid Mech., 13, 609 (1962)
Kulik VM, Poguda IS, Semenov BN, Experimental investigation of one-layer viscoelastic coatings action on turbulent friction and wall pressure pulsations, in Recent Developments in Turbulence Management, K. S. Choi Ed., Kluwer Academic Publishers, Dordrecht, Netherlands, 263 (1991).
Semenov BN, On conditions of modelling and choice of viscoelastic coatings for drag reduction, in Recent Developments in Turbulence Management, Choi KS Ed., Kluwer Academic Publishers, Dordrecht, Netherlands, 241 (1991).
Choi KS, Yang X, Clayton BR, Glover EJ, Atlar M, Semenov BN, Kulik VM, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 453, 2229 (1997)
Endo T, Himeno R, J. Turbulence, 3, 7 (2002)
Xu S, Rempfer D, Lumley J, J. Fluid Mech., 478, 11 (2003)
Kawamura T, Moriguchi Y, Kato H, Kakugawa A, Kodama Y, Effect of bubble size on the microbubble drag reduction of a turbulent boundary layer, ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference (2003).
Afiza E, Okanaga H, Effect of skin friction reduction by microbubbles in pipe flow, Proceedings of the School of Engineering of Tokai University (2012).
Kodama Y, Kakugawa A, Takahashi T, Kawashima H, Int. J. Heat Fluid Flow, 21, 582 (2000)
Kato H, Iwashina T, Miyanaga M, Yamaguchi H, J. Marine Sci. Technol., 4, 155 (1999)
McCormick ME, Bhattacharyya R, Naval Engineers J., 85, 11 (1973)
Merkle CL, Deutsch S, Appl. Mech. Rev., 45, 103 (1992)
Madavan NK, Deutsch S, Merkle CL, J. Fluids Eng., 107, 370 (1985)
Lu X, Kato H, Kawamura T, Turbulent drag reduction effect by hydrogen and oxygen microbubbles made by electrolysis, ASME 2006 2nd Joint US-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering (2006).
Wu SJ, Hsu CH, Lin TT, Ocean Eng., 34, 83 (2007)
Xu J, Maxey MR, Karniadakis GE, J. Fluid Mech., 468, 271 (2002)
Kodama Y, Effect microbubbles distribution on skin friction reduction, Proceedings of the International Symposium on Seawater Drag Reduction (1998).
Wu SJ, Ouyang K, Shiah SW, Ocean Eng., 35, 856 (2008)
Forrest F, Grierson GA, Paper Trade J., 92, 39 (1931)
You ZJ, Lin JZ, Shao XM, Zhang WF, Chin. J. Chem. Eng., 12(3), 319 (2004)
Lee PFW, Duffy GG, AIChE J., 22, 750 (1976)
Radin I, Solid fluid drag reduction, Ph.D. Thesis, University of Missouri - Rolla (1974).
Radin I, Zakin JL, Patterson GK, AIChE J., 21, 358 (1975)
Vaseleski RC, Metzner AB, AIChE J., 20, 301 (1974)
Moyls AL, Sabersky RH, Int. J. Heat Mass Transf., 21, 7 (1978)
Paschkewitz JS, Dubief YV, Dimitropoulos CD, Shaqfeh ESG, Moin P, J. Fluid Mech., 518, 281 (2004)
Mysels KJ, Flow of thickened fluids, US Patent, 2,492,173 (1949).
Wang Y, Yu B, Zakin JL, Shi H, Adv. Mech. Eng., 2011, 1 (2011)
Tamano S, Itoh M, Kato K, Yokota K, Phys. Fluids, 22, 055102 (2010)
Radin I, Zakin JL, Patterson GK, Exploratory drag reduction studies in non-polar soap systems, in Viscous Drag Reduction, Wells CS Ed., Springer USA, 213 (1969).
Rozanski J, J. Non-Newton. Fluid Mech., 166(5-6), 279 (2011)
Wei JJ, Kawaguchi Y, Li FC, Yu B, Zakin JL, Hart DJ, Zhang Y, Int. J. Heat Mass Transf., 52(15-16), 3547 (2009)
Krope A, Lipus LC, Appl. Therm. Eng., 30, 833 (2010)
Yu B, Kawaguchi Y, Int. J. Heat Fluid Flow, 24, 491 (2003)
Yu B, Li F, Kawaguchi Y, Int. J. Heat Fluid Flow, 25, 961 (2004)
Bewersdorff HW, Ohlendorf D, Colloid Polym. Sci., 266, 941 (1988)
HU YT, MATTHYS EF, Rheol. Acta, 34(5), 450 (1995)
Kim C, Park SR, Yoon HK, Haw JR, J. Chem. Eng. Jpn., 37(11), 1326 (2004)
Zhang H, Wang D, Chen H, Arch. Appl. Mech., 79, 773 (2009)
Qi YY, Kawaguchi YS, Lin ZQ, Ewing M, Christensen RN, Zakin JL, Int. J. Heat Mass Transf., 44(8), 1495 (2001)
Cheng L, Liu L, Mewes D, Drag reduction with surfactants and polymeric additives in multiphase flow, in Advances in Multiphase Multiphase Flow and Heat Transfer, Cheng L, Mewes D Eds., Bentham Science Publishers, USA, 149 (2012).
Kale DD, Metzner AB, AIChE J., 22, 669 (1976)
Chou LC, Drag reducing cationic surfactant solutions for district heating and cooling systems, Ph.D. Thesis, The Ohio State University (1991).
Lioumbas JS, Mouza AA, Paras SV, Chem. Eng. Sci., 61(14), 4605 (2006)
Wilkens RJ, Thomas DK, Int. J. Multiph. Flow, 33(2), 134 (2007)
Ohlendorf D, Interthal W, Hoffmann H, Rheol. Acta, 25, 468 (1986)
Hellsten M, J. Surfactants Detergents, 5, 65 (2002)
Chang RC, Zakin JL, Influence of polymer additives on velocity and temperature fields, Proceedings of the IUTAM Symposium (1985).
Cho SH, Tae CS, Zaheeruddin M, Energy Conv. Manag., 48(3), 913 (2007)
Hellsten M, Harwigsson I, A new biodegradable friction reducing additive (FRA) for district cooling networks, Proceedings of the 85th International District Heating and Cooling Association (IDHCA '94) (1994).
Zakin JL, Lui HL, Chem. Eng. Commun., 23, 77 (1983)
Suali E, Hayder AB, Hasan Z, Rahman M, J. Appl. Sci., 10, 2683 (2010)
Savins JG, Rheol. Acta, 6, 323 (1967)
Zakin JL, Brosh M, Poreh A, Warshavsky M, Chem. Eng. Professional Symposium Series, 67, 85 (1971)
Al-Sarkhi A, Int. J. Multiph. Flow, 39, 186 (2012)
Al-Sarkhi A, Abu-Nada E, Batayneh M, Int. J. Multiph. Flow, 32(8), 926 (2006)
Al-sarkhi A, El Nakla M, Ahmed WH, Int. J. Multiph. Flow, 37(5), 501 (2011)
Al-Yaari M, Soleimani A, Abu-Sharkh B, Al-Mubaiyedh U, Al-Sarkhi A, Int. J. Multiph. Flow, 35(6), 516 (2009)
Fernandes RLJ, Jutte BM, Rodriguez MG, Int. J. Multiph. Flow, 30(9), 1051 (2004)
Jia N, Gourma M, Thompson CP, Chem. Eng. Sci., 66(20), 4742 (2011)
Mowla D, Naderi A, Chem. Eng. Sci., 61(5), 1549 (2006)
Xu JY, Wu YX, Li H, Guo J, Chang Y, Chem. Eng. J., 147(2-3), 235 (2009)
Green AE, Rivlin RS, Quarterly Appl. Mathematics, 14, 299 (1956)
Wheeler JA, Wissler EH, Trans. Soc. Rheol., 10, 353 (1966)
Townsend P, Walters K, Waterhouse WM, J. Non-Newton. Fluid Mech., 1, 107 (1976)
Gervang B, Larsen PS, J. Non-Newton. Fluid Mech., 39, 217 (1991)
Gao S, Flow and heat transfer behavior of non-Newtonian fluids in rectangular ducts, Ph.D. Thesis, University of Illinois at Chicago (1993).
Xie C, Hartnett JP, Ind. Eng. Chem. Res., 31, 727 (1992)
Rao BK, Heat transfer to viscoelastic fluids in a 5:1 rectangular duct, Ph.D. Thesis, University of Illinois at Chicago (1988).
Rao BK, Int. J. Heat Fluid Flow, 10, 334 (1989)
Bianco V, Manca O, Nardini S, Int. J. Therm. Sci., 50, 341 (2011)
Duangthongsuk W, Wongwises S, Int. J. Heat Mass Transf., 52(7-8), 2059 (2009)
Hwang KS, Jang SP, Choi SUS, Int. J. Heat Mass Transf., 52(1-2), 193 (2009)
Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moon S, Curr. Appl. Phys., 9, 119 (2009)
Kumar P, Ganesan R, Int. J. Civil Environ. Eng., 6, 385 (2012)
Lee J, Flynn RD, Goodson KE, Eaton JK, Convective heat transfer of nanofluids (DI water-Al2O3) in microchannels, ASMEJSME Thermal Engineering Summer Heat Transfer Conference (2007).
Maiga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N, Int. J. Heat Fluid Flow, 26, 530 (2005)
Rea U, McKrell T, Hu LW, Buongiorno J, Int. J. Heat Mass Transf., 52(7-8), 2042 (2009)
Sundar LS, Singh MK, Sousa ACM, Int. Commun. Heat Mass Transf., 44, 7 (2013)
Vajjha RS, Das DK, Kulkarni DP, Int. J. Heat Mass Transf., 53(21-22), 4607 (2010)
Heris ZS, Etemad SG, Esfahany NM, Int. Commun. Heat Mass Transf., 33, 529 (2006)
Chun BH, Kang HU, Kim SH, Korean J. Chem. Eng., 25(5), 966 (2008)
Samira P, Saeed ZH, Motahare S, Mostafa K, Korean J. Chem. Eng., 32(4), 609 (2015)
Liu ZH, Liao L, Int. J. Therm. Sci., 49, 2331 (2010)
Drzazga M, Gierczycki A, Dzido G, Lemanowicz M, Chin. J. Chem. Eng., 21(1), 104 (2013)
Yang JC, Li FC, Zhou WW, He YR, Jiang BC, Int. J. Heat Mass Transf., 55(11-12), 3160 (2012)
Li FC, Yang JC, Zhou WW, He YR, Huang YM, Jiang BC, Thermochim. Acta, 556, 47 (2013)
Yang JC, Li FC, He YR, Huang YM, Jiang BC, Int. J. Heat Mass Transf., 62, 303 (2013)
Kostic MM, Critical issues and application potentials in nanofluids research, ASME 2006 Multifunctional Nanocomposites International Conference (2006).
Kostic MM, Critical issues in nanofluids research and application potentials in Nanofluids: Research, Development and Applications, Zhang Y Ed., Nova Science Pub. Inc., New York, USA, 1 (2013).
Walleck CJ, Development of steady-state, parallel-plate thermal conductivity apparatus for poly-nanofluids and comparative measurements with transient HWTC apparatus, M.S. Thesis, Northern Illinois University (2009).
Wang X, Xu X, Choi SUS, J. Thermophys. Heat Transf., 13, 474 (1999)
Nguyen CT, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Mintsa HA, Int. J. Heat Fluid Flow, 28, 1492 (2007)
Aladag B, Halelfadl S, Doner N, Mare T, Duret S, Estelle P, Appl. Energy, 97, 876 (2012)
Keblinski P, Eastman JA, Cahill DG, Mater. Today, 8, 36 (2005)
Mare T, Halelfadl S, Sow O, Estelle P, Duret S, Bazantay F, Exp. Therm. Fluid Sci., 35, 1535 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로