Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 26, 2014
Accepted December 1, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Modified model for estimation of agglomerate sizes of binary mixed nanoparticles in a vibro-fluidized bed
1Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Changsha, 410083 Hunan, China 2Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China Institute of Technology, Nanchang, 330013 Jiangxi, China 3, China 4Engineering Research Center of Nuclear Technology Application, East China Institute of Technology, Ministry of Education, Nanchang, 330013 Jiangxi, China
zhoutao@csu.edu.cn, t2zhou@hotmail.com
Korean Journal of Chemical Engineering, August 2015, 32(8), 1515-1521(7), 10.1007/s11814-014-0357-z
Download PDF
Abstract
A modified model is established according to the analysis of energy balance acting on an agglomerate of binary mixed nanoparticles in a vibrated fluidized bed (VFB). The sizes of agglomerates of binary mixed nanoparticles are calculated with this model. The average agglomerate size estimated by the model of energy balance decreases with increasing superficial gas velocity. The vibration frequency had a comparatively significant impact on agglomerate sizes that seemed to change regularly and decreased with higher frequency. Both of the experimental and theoretical results showed that vibration led to a smaller agglomerate size, and the average agglomerate sizes calculated by this model provided the closest fit to those determined experimentally.
References
Long M, Cai WM, Cai J, Zhou BX, Chai XY, Wu YH, J. Phys. Chem. B, 110(41), 20211 (2006)
Millan JMV, Fluidization of fine powders, Springer, Springer Dordrecht Heidelberg New York London (2013).
Meili L, Daleffe RV, Freire JT, Chem. Eng. Technol., 35(9), 1649 (2012)
Valverde JM, Castellanos A, AIChE J., 52(5), 1705 (2006)
Xu CB, Zhu J, Chem. Eng. Sci., 60(23), 6529 (2005)
Nam CH, Pfeffer R, Dave RN, Sundaresan S, AIChE J., 50(8), 1776 (2004)
Wang H, Zhou T, Yang JS, Wang JJ, Kage H, Mawatari Y, Chem. Eng. Technol., 33(3), 388 (2010)
Zhou L, Wang H, Zhou T, Li K, Kage H, Mawatari Y, Adv. Powder Technol., 24(1), 311 (2013)
Iwadate Y, Horio M, Powder Technol., 100(2), 223 (1998)
Zhou T, Li HZ, Powder Technol., 101(1), 57 (1999)
Mawatari Y, Ikegami T, Tatemoto Y, Noda K, J. Chem. Eng. Jpn., 36(3), 277 (2003)
Zhu C, Yu Q, Dave RN, Pfeffer R, AIChE J., 51(2), 426 (2005)
Wang Y, Gu GS, Wei F, Wu J, Powder Technol., 124(1-2), 152 (2002)
Yang JS, Zhou T, Song LY, Adv. Powder Technol., 20(2), 158 (2009)
Liang XZ, Duan H, Wang J, Zhou T, Chem. Eng. Technol., 37(1), 20 (2014)
Wang TJ, Jin Y, Tsutsumi A, Wang ZW, Cui Z, Chem. Eng. J., 78(2-3), 115 (2000)
Leva M, Fluidization, McGraw-Hill, New York, 327 (1959).
Krupp H, Adv. Colloid Interface Sci., 1, 111 (1967)
Krupp H, Sperling G, J. Appl. Phys., 37(11), 4176 (1966)
Israelachvili JN, Intermolecular and surface forces, Academic Press, Orlando, FL (1985).
Liang XZ, Duan H, Zhou T, Kong JR, Adv. Powder Technol., 25(1), 236 (2014)
de Martin L, Fabre A, van Ommen JR, Chem. Eng. Sci., 112, 79 (2014)
Hakim LF, Portman JL, Casper MD, Weimer AW, Powder Technol., 160(3), 149 (2005)
Ammendola P, Chirone R, Powder Technol., 201(1), 49 (2010)
Zhou T, Li HZ, Shinohara K, Adv. Powder Technol., 17(2), 159 (2006)
Kaliyaperumal S, Barghi S, Briens L, Rohani S, Zhu J, Particuology, 9(3), 279 (2011)
Barletta D, Poletto M, Powder Technol., 225, 93 (2012)
Millan JMV, Fluidization of fine powders, Springer, Springer Dordrecht Heidelberg New York London (2013).
Meili L, Daleffe RV, Freire JT, Chem. Eng. Technol., 35(9), 1649 (2012)
Valverde JM, Castellanos A, AIChE J., 52(5), 1705 (2006)
Xu CB, Zhu J, Chem. Eng. Sci., 60(23), 6529 (2005)
Nam CH, Pfeffer R, Dave RN, Sundaresan S, AIChE J., 50(8), 1776 (2004)
Wang H, Zhou T, Yang JS, Wang JJ, Kage H, Mawatari Y, Chem. Eng. Technol., 33(3), 388 (2010)
Zhou L, Wang H, Zhou T, Li K, Kage H, Mawatari Y, Adv. Powder Technol., 24(1), 311 (2013)
Iwadate Y, Horio M, Powder Technol., 100(2), 223 (1998)
Zhou T, Li HZ, Powder Technol., 101(1), 57 (1999)
Mawatari Y, Ikegami T, Tatemoto Y, Noda K, J. Chem. Eng. Jpn., 36(3), 277 (2003)
Zhu C, Yu Q, Dave RN, Pfeffer R, AIChE J., 51(2), 426 (2005)
Wang Y, Gu GS, Wei F, Wu J, Powder Technol., 124(1-2), 152 (2002)
Yang JS, Zhou T, Song LY, Adv. Powder Technol., 20(2), 158 (2009)
Liang XZ, Duan H, Wang J, Zhou T, Chem. Eng. Technol., 37(1), 20 (2014)
Wang TJ, Jin Y, Tsutsumi A, Wang ZW, Cui Z, Chem. Eng. J., 78(2-3), 115 (2000)
Leva M, Fluidization, McGraw-Hill, New York, 327 (1959).
Krupp H, Adv. Colloid Interface Sci., 1, 111 (1967)
Krupp H, Sperling G, J. Appl. Phys., 37(11), 4176 (1966)
Israelachvili JN, Intermolecular and surface forces, Academic Press, Orlando, FL (1985).
Liang XZ, Duan H, Zhou T, Kong JR, Adv. Powder Technol., 25(1), 236 (2014)
de Martin L, Fabre A, van Ommen JR, Chem. Eng. Sci., 112, 79 (2014)
Hakim LF, Portman JL, Casper MD, Weimer AW, Powder Technol., 160(3), 149 (2005)
Ammendola P, Chirone R, Powder Technol., 201(1), 49 (2010)
Zhou T, Li HZ, Shinohara K, Adv. Powder Technol., 17(2), 159 (2006)
Kaliyaperumal S, Barghi S, Briens L, Rohani S, Zhu J, Particuology, 9(3), 279 (2011)
Barletta D, Poletto M, Powder Technol., 225, 93 (2012)