ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 22, 2014
Accepted December 2, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Hydrogen selectivity and permeance effect on the water gas shift reaction (WGSR) in a membrane reactor

Department of Chemical Systematic Engineering, Catholic University of Daegu, 13-13, Hayang-ro, Hayang-yep, Gyeongsan, Gyeongbuk 712-702, Korea
hklim@cu.ac.kr
Korean Journal of Chemical Engineering, August 2015, 32(8), 1522-1527(6), 10.1007/s11814-014-0359-x
downloadDownload PDF

Abstract

Simulated results are presented using a reaction rate equation and a one-dimensional reactor model for a water gas shift reaction (WGSR) in a membrane reactor (MR) with a feed stream obtained from coal gasifiers. CO conversion in a MR at 423-573 K was higher than equilibrium conversion at the same temperature. The effect of two important parameters of a membrane, hydrogen selectivity and hydrogen permeance, on MR performance was studied and hydrogen selectivity was favorable for enhanced CO conversion, reduced CO concentration, and enhanced fuel-cell grade hydrogen. Hydrogen permeance was also favorable for CO conversion enhancement in a MR due to an increased driving force between the shell side (retentate) and the tube side (permeate) of a membrane. The criteria of a hydrogen permeance of higher than 8×10.8 mol m.2s.1Pa.1 and a hydrogen selectivity of 100 were suggested to produce a fuel-cell grade hydrogen (CO concentration less than 50 ppm) in the permeate and a concentrated CO2 (more than 90%) in the retentate simultaneously in a MR.

References

Marcano JGS, Tsotsis TT, Catalytic membranes and membrane reactors, WILEY-VCH, Weinheim (2002).
Lee D, Hacarlioglu P, Oyama ST, Top. Catal., 29, 45 (2004)
Irusta S, Munera J, Carrara C, Lombardo EA, Cornaglia LM, Appl. Catal. A: Gen., 287(2), 147 (2005)
Tsuru T, Yamaguchi K, Yoshioka T, Asaeda M, AIChE J., 50(11), 2794 (2004)
Hacarlioglu P, Gu Y, Oyama ST, J. Nat. Gas Chem., 15, 73 (2006)
Tong JH, Matsumura Y, Appl. Catal. A: Gen., 286(2), 226 (2005)
Patil CS, Annaland MVS, Kuipers JAM, Chem. Eng. Sci., 62(11), 2989 (2007)
Kikuchi E, Kawabe S, Matsukata M, J. Jpn. Pet. Inst., 46, 93 (2003)
Lee DW, Nam SE, Sea B, Ihm SK, Lee KH, Catal. Today, 118(1-2), 198 (2006)
Basile A, Gallucci F, Paturzo L, Catal. Today, 104(2-4), 244 (2005)
Lim H, Gu YF, Oyama ST, J. Membr. Sci., 351(1-2), 149 (2010)
Lim H, Gu YF, Oyama ST, J. Membr. Sci., 396, 119 (2012)
Tosti S, Basile A, Borgognoni F, Capaldo V, Cordiner S, Di Cave S, Gallucci F, Rizzello C, Santucci A, Traversa E, J. Membr. Sci., 308(1-2), 250 (2008)
Tosti S, Basile A, Borgognoni F, Capaldo V, Cordiner S, Di Cave S, Gallucci F, Rizzello C, Santucci A, Traversa E, J. Membr. Sci., 308(1-2), 258 (2008)
Tosti S, Basile A, Chiappetta G, Rizzello C, Violante V, Chem. Eng. J., 93(1), 23 (2003)
Basile A, Chiappetta G, Tosti S, Violante V, Sep. Purif. Technol., 25(1-3), 549 (2001)
Brunetti A, Barbieri G, Drioli E, Lee KH, Sea B, Lee DW, Chem. Eng. Process., 46(2), 119 (2007)
Brunetti A, Caravella A, Barbieri G, Drioli E, J. Membr. Sci., 306(1-2), 329 (2007)
Barbieri G, Brunetti A, Tricoli G, Drioli E, J. Power Sources, 182(1), 160 (2008)
Mendes D, Chibante V, Zheng JM, Tosti S, Borgognoni F, Mendes A, Madeira LM, Int. J. Hydrog. Energy, 35(22), 12596 (2010)
Mendes D, Sa S, Tosti S, Sousa JM, Madeira LM, Mendes A, Chem. Eng. Sci., 66(11), 2356 (2011)
Zhang YT, Wu ZJ, Hong Z, Gu XH, Xu NP, Chem. Eng. J., 197, 314 (2012)
Cornaglia CA, Tosti S, Sansovini M, Munera J, Lombardo EA, Appl. Catal. A: Gen., 462-463, 278 (2013)
Cornaglia CA, Adrover ME, Munera JF, Pedernera MN, Borio DO, Lombardo EA, Int. J. Hydrog. Energy, 38(25), 10485 (2013)
Singh CPP, Saraf DN, Ind. Eng. Chem. Prod. Res. Dev., 16(3), 313 (1977)
Ovesen CV, Stoltze P, Norskov JK, Campbell CT, J. Catal., 134, 445 (1992)
Sun J, DesJardins J, Buglass J, Liu K, Int. J. Hydrog. Energy, 30(11), 1259 (2005)
Phatak AA, Koryabkina N, Rai S, Ratts JL, Ruettinger W, Farrauto RJ, Blau GE, Delgass WN, Ribeiro FH, Catal. Today, 123(1-4), 224 (2007)
Choi Y, Stenger HG, J. Power Sources, 124(2), 432 (2003)
Oyama ST, Lim H, Chem. Eng. J., 151(1-3), 351 (2009)
http://www.netl.doe.gov/technologies/ccbtl/refshelf/pubs/Membrane%20test%20protocol%20v10_2008_final10092008.pdf.
Pizzi D, Worth R, Baschetti MG, Sarti GC, Noda K, J. Membr. Sci., 325(1), 446 (2008)
Dunbar ZW, Chu D, J. Power Sources, 217, 47 (2012)
Dittmar B, Behrens A, Schodel N, Ruttinger M, Franco T, Straczewski G, Dittmeyer R, Int. J. Hydrog. Energy, 38(21), 8759 (2013)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로