ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 16, 2014
Accepted December 20, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Photocatalytic degradation of 2,4-dichlorophenol over Fe-ZnO catalyst under visible light

1International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand 2Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand 3National Nanotechnology Center, Thailand Science Park, Pathumthani 12120, Thailand 4Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathumthani 12121, Thailand
gnurak@engr.tu.ac.th
Korean Journal of Chemical Engineering, August 2015, 32(8), 1578-1585(8), 10.1007/s11814-014-0379-6
downloadDownload PDF

Abstract

Fe-ZnO was synthesized via impregnation and applied to photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) under visible light. Conditions of Fe-ZnO synthesis which included a Fe content and a calcination temperature were focused. From UV-DRS, visible light absorption of Fe-ZnO samples increased with increasing of Fe content and calcination temperature. TEM images revealed Fe species (FeO, Fe3O4, and Fe2O3) on ZnO as a function of calcination temperature. XANES analysis confirmed the majority of Fe3+ content. Response surface methodology (RSM) dominating over experimental design and statistical analysis for 2,4-DCP photocatalytic degradation indicated that the high degradation efficiency was associated with calcination temperature of 680-700 oC, Fe content of 4.5-5.0mol%, and catalyst loading of 1.2-1.8 g L.1. Moreover, addition of 2mM of K2S2O8 in a 5.0Fe-ZnO@700 oC system could enhance the degradation efficiency to a completion within 90 min. The kinetics of 2,4-DCP photocatalytic degradation well fit the Langmuir-Hinshelwood model.

References

Zhang JF, Liu H, Sun YY, Wang XR, Wu JC, Xue YQ, Environ. Toxicol. Pharmacol., 19, 185 (2005)
Li Y, Li X, Li YQ, Environ. Pollut., 157, 1879 (2009)
Muruganandam Ponvel K, Kavitha D, Kim KM, Lee CH, Korean J. Chem. Eng., 26(5), 1379 (2009)
Khodja AA, Sehili T, Pihichowski JF, Boule P, J. Photochem. Photobiol. A-Chem., 141, 231 (2001)
Li D, Haneda H, Chemosphere, 51, 129 (2003)
Wang RH, Xin JHZ, Yang Y, Liu HF, Xu LM, Hu JH, Appl. Surf. Sci., 227(1-4), 312 (2004)
Nahar MS, Hasegawa K, Kagaya S, Chemosphere, 65, 1976 (2006)
Chen SF, Zhao W, Zhang SJ, Liu W, Chem. Eng. J., 148(2-3), 263 (2009)
Zhang X, Lei L, Mater. Lett., 62, 895 (2008)
Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA, Talanta, 76, 965 (2008)
Sharma PK, Dutta RK, Pandey AC, Layek S, Verma SL, J. Magn. Magn. Mater., 321, 2587 (2009)
Bera A, Basak D, ACS Appl. Mater. Interfaces, 2, 408 (2010)
Lu X, Lu N, Gao J, Jin X, Lu C, Polym. Int., 56, 601 (2007)
Porambo MW, Howard HR, Marsh AL, J. Phys. Chem. C, 114, 1580 (2010)
Chen C, Teo KL, Chong TC, Wu YH, Osipowicz T, Rahman MA, J. Cryst. Growth, 264(1-3), 58 (2004)
Abdul MBA, Kadhum AH, Mohamad AR, Takriff MS, Sopian K, Chemosphere, 91, 1604 (2013)
Yi S, Cui J, Li S, Zhang L, Wang D, Lin Y, Appl. Surf. Sci., http://dx.doi.org/10.1016/j.apsusc.2014.06.151 (2014)
Han L, Wang D, Lu Y, Jiang T, Chen L, Xie T, Lin Y, Sens. Actuators B-Chem., 177, 34 (2013)
Yin Q, Qiao R, Zhu L, Li Z, Li M, Wu W, Mater. Lett., 135, 135 (2014)
Kong JZ, Li AD, Zhai HF, Gong YP, Li H, Wu D, J. Solid State Chem., 182, 2061 (2009)
Liu C, Meng D, Pang H, Wu X, Xie J, Yu X, Chen L, Liu X, J. Magn. Magn. Mater., 324, 3356 (2012)
Karamat S, Rawat RS, Lee P, Tan TL, Ramanujan RV, Prog. Nat. Sci.: Mater. Int., 24, 142 (2014)
Maensiri S, Laokul P, Promarak V, J. Cryst. Growth, 289(1), 102 (2006)
Choi KM, Augustine S, Kim YM, Lee JH, Lee JY, Kang JK, J. Mater. Chem., 21, 15175 (2011)
Yoon T, Kim J, Kim J, Lee J, Energies, 6, 4830 (2013)
Sun P, Wang C, Zhou X, Chen P, Shimanoe K, Lu G, Yamazoe N, Sens. Actuators B-Chem., 193, 616 (2014)
Hou Y, Xu Z, Sun S, Angew. Chem.-Int. Edit., 46, 6329 (2007)
Teixeira APC, Tristao JC, Araujo MH, Oliveira LCA, Moura FCC, Ardisson JD, Amorim CC, Lago RM, J. Braz. Chem. Soc., 23, 1579 (2012)
Wei XX, Song C, Geng KW, Zeng F, He B, Pan F, J. Phys. Condens. Matter, 18, 7471 (2006)
Agency for Toxic Substances and Disease Registry, Toxicological Profile for Chlorophenols, U.S. Department of Health and Human Services, Atlanta, Georgia (1999).
Liu HL, Chiou YR, Chem. Eng. J., 112(1-3), 173 (2005)
Saleh R, Djaja NF, Superlattices Microstruct., 74, 217 (2014)
Behnajady MA, Modirshahla N, Hamzavi R, J. Hazard. Mater., 133(1-3), 226 (2006)
Naeem K, Ouyang F, J. Environ. Sci., 21, 527 (2009)
Lackhoff M, Niessner R, Environ. Sci. Technol., 36, 5342 (2002)
Evgenidou E, Fytianos K, Poulios I, Appl. Catal. B: Environ., 59(1-2), 81 (2005)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로