ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 3, 2014
Accepted February 5, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

High performance of manganese oxide octahedral molecular sieve adsorbents for removing sulfur compounds from fuel gas

Department of Chemical Engineering, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Busan 608-739, Korea 1Department of Chemical Engineering, The University of Seoul, 13 Siripdae-gil, Dongdaemun-gu, Seoul 130-743, Korea
dolee@uos.ac.kr
Korean Journal of Chemical Engineering, September 2015, 32(9), 1766-1773(8), 10.1007/s11814-015-0031-0
downloadDownload PDF

Abstract

Properties of porous manganese oxide adsorbents for adsorptive removal of tert-butylmercaptan (TBM) from CH4 fuel gas were investigated at ambient temperature and atmospheric pressure. The adsorbents were prepared by oxidation reactions of Mn2+ with KMnO4 and via the sol-gel method by reduction of KMnO4 using fumaric acid as the reducing agent. The effects of preparation method, precursor, temperature, and time for the structure and desulfurization properties of the resulting adsorbents were studied. Cryptomelane octahedral manganese oxide molecular sieve (OMS-2) adsorbents exhibited high breakthrough TBM adsorption (1.3-2.5mmol g.1) with the properties varied by the synthesis condition. The OMS-2-Ac prepared by the oxidation reactions of manganese acetate resulted in smaller OMS-2 crystallites with higher surface area compared to those prepared from manganese sulfate and chloride precursors, and it exhibited an enhanced TBM adsorption uptake. TBM adsorption capacity of OMS-2 could be further enhanced by introducing Cu into the structure. This gave rise to a markedly high TBM breakthrough adsorption (7.4mmol g.1) for Cu-OMS-2 (7.8 wt% Cu doping), which is significantly greater than the values reported for activated carbon, zeolite, and other porous oxide based solid adsorbents at similar conditions in the literature.

References

Lee D, Kim J, Lee HC, Lee KH, Park ED, Woo HC, J. Phys. Chem., 112, 18955 (2008)
Satokawa S, Kobayashi Y, Fujiki H, Appl. Catal. B: Environ., 56(1-2), 51 (2005)
Ho PH, Lee SY, Lee D, Woo HC, Int. J. Hydrog. Energy, 39(12), 6737 (2014)
Song CS, Catal. Today, 77(1-2), 17 (2002)
Ferrauto R, Hwang S, Shore L, Ruettinger W, Lampert J, Giroux T, Liu Y, Ilinich O, Annu. Rev. Mater. Res., 33, 1 (2003)
Whitehurst DD, Isoda T, Mochida I, Adv. Catal., 42, 345 (1998)
Cui H, Turn SQ, Appl. Catal. B: Environ., 88(1-2), 25 (2009)
Tamai H, Nagoya H, Shiono T, J. Colloid Interface Sci., 300(2), 814 (2006)
Hernandeza S, Solarino L, Orsello G, Russo N, Fino D, Saracco G, Specchia V, Int. J. Hydrog. Energy, 33(12), 3209 (2008)
Lee D, Ko EY, Lee HC, Kim S, Park ED, Appl. Catal. A: Gen., 334(1-2), 129 (2008)
Kim YH, Woo HC, Lee D, Lee HC, Park ED, Korean J. Chem. Eng., 26, 1291 (2010)
Hwang CL, Tai NH, Appl. Catal. B: Environ., 93(3-4), 363 (2010)
Bakr A, Salem SH, Ind. Eng. Chem. Res., 33(2), 336 (1994)
Yang RT, Hernandez-Maldonado AJ, Yang FH, Science, 301, 79 (2003)
Ng FTT, Rahman A, Ohasi T, Jiang M, Appl. Catal. B: Environ., 56(1-2), 127 (2005)
Garcia CL, Lercher JA, J. Phys. Chem., 95, 10729 (1991)
Velu S, Ma XL, Song CS, Ind. Eng. Chem. Res., 42(21), 5293 (2003)
Jung GS, Park DH, Lee DH, Lee HC, Hong SB, Woo HC, Appl. Catal. B: Environ., 100(1-2), 264 (2010)
Kim HT, Kim SM, Jun KW, Yoon YS, Kim JH, Int. J. Hydrog. Energy, 32(15), 3603 (2007)
Jeevanandam P, Klabunde KJ, Tetzler SH, Microporous Mesoporous Mater., 79, 101 (2005)
Ho PH, Lee SC, Kim J, Lee D, Woo HC, Fuel Process. Technol., 131, 238 (2015)
Qiu G, Huang H, Dharmarathna S, Benbow E, Stafford L, Suib SL, Chem. Mater., 23, 3892 (2011)
Nyutu EK, Chen CH, Sithambaram S, Crisostomo VMB, Suib SL, J. Phys. Chem., 112, 6786 (2008)
Opembe NN, King’ondu CK, Espinal AE, Chen CH, Nyutu EK, Crisostomo VM, Suib SL, J. Phys. Chem., 114, 14417 (2010)
Feng Q, Kanoh H, Miyai Y, Ooi K, Chem. Mater., 7, 148 (1995)
Genuino HC, Dharmarathna S, Njagi E, Mei MC, Suib SL, J. Phys. Chem., 116, 12066 (2012)
Hernandez WY, Centeno MA, Ivanova S, Eloy P, Gaigneaux EM, Odriozola JA, Appl. Catal. B: Environ., 123, 27 (2012)
Kumar R, Sithambaram S, Suib SL, J. Catal., 262(2), 304 (2009)
Oishi T, Yamaguchi K, Mizuno N, ACS Catal., 1, 1351 (2011)
Ghodbane O, Ataherian F, Wu NL, Favier F, J. Power Sources, 206, 454 (2012)
Jiang CH, Dou SX, Liu HK, Ichihara M, Zhou HS, J. Power Sources, 172(1), 410 (2007)
Yuan JK, Liu XG, Akbulut O, Hu JQ, Suib SL, Kong J, Stellacci F, Nat. Nanotechnol., 3(6), 332 (2008)
Ching S, Roark JL, Duan N, Suib SL, Chem. Mater., 9, 750 (1997)
Ching S, Roark JL, Duan N, Suib SL, Chem. Mater., 9, 750 (1997)
Shen XF, Ding YS, Liu J, Cai J, Laubernds K, Zerger RP, Vasiliev A, Aindow M, Suib SL, Adv. Mater., 17(7), 805 (2005)
Wakita H, Tachibana Y, Hosaka M, Microporous Mesoporous Mater., 46, 237 (2001)
Moulder JF, Stickle WF, Sobol PE, Bomben KD, Chastain J, King RC, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronic, U.S.A. (1995).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로