Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 15, 2014
Accepted December 26, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
A two-dimensional analytical model of laminar flame in lycopodium dust particles
Department of Mechanical Engineering, Shahid Rajaee Teacher Training University (SRTTU), Tehran, Iran 1Department of Mechanical Engineering, Iran University of Science and Technology, Combustion Research Laboratory, Narmak, Tehran, Iran
ar.rahbari@gmail.com
Korean Journal of Chemical Engineering, September 2015, 32(9), 1798-1803(6), 10.1007/s11814-014-0387-6
Download PDF
Abstract
A two-dimensional analytical model is presented to determine the flame speed and temperature distribution of micro-sized lycopodium dust particles. This model is based on the assumptions that the particle burning rate in the flame front is controlled by the process of oxygen diffusion and the flame structure consists of preheat, reaction and post flame zones. In the first step, the energy conservation equations for fuel-lean condition are expressed in twodimensions, and then these differential equations are solved using the required boundary condition and matching the_x000D_
temperature and heat flux at the interfacial boundaries. Consequently, the obtained flame temperature and flame speed distributions in terms of different particle diameters and equivalence ratio for lean mixture are compared with the corresponding experimental data for lycopodium dust particles. Consequently, it is shown that this two-dimensional model demonstrates better agreement with the experimental results compared to the previous models.
Keywords
References
Krazinski JL, Buckius RO, Krier H, Prog. Energy Combust. Sci., 5, 31 (1979)
Hertzberg M, Cashdollar KL, Zlochower IA, Symp. (Int.) Combust., 21, 303 (1988)
Berlad AL, Ross H, Facca L, Tangirala V, Combust. Flame, 82, 449 (1990)
Sun JH, Dobashi R, Hirano T, Symp. (Int.) Combust., 27, 2405 (1998)
Proust C, Experimental determination of the maximum flame temperatures and of the laminar burning velocities for some combustible dust-air mixtures, Proceedings of the Fifth International Colloquium on Dust Explosions, Pultusk, Poland (1993).
Shoshin Y, Dreizin E, Combust. Flame, 133(3), 275 (2003)
Chen ZH, Fan BC, J. Loss Prev. Process Ind., 18(1), 13 (2005)
Goroshin S, Kolbe M, Lee JHS, Symp. (Int.) Combust., 28, 2811 (2000)
Han OS, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T, J. Loss Prev. Process Ind., 13(6), 449 (2000)
Han OS, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T, J. Loss Prev. Process Ind., 14(3), 153 (2001)
Proust C, J. Loss Prev. Process Ind., 19(1), 89 (2006)
Proust C, J. Loss Prev. Process Ind., 19(2-3), 104 (2006)
Bidabadi M, Rahbari A, Combust. Explos., 45, 278 (2009)
Bidabadi M, Rahbari A, J. Mech. Sci. Technol., 23, 2417 (2009)
Bidabadi M, Haghiri A, Rahbari A, Int. J. Therm. Sci., 49, 534 (2010)
Bidabadi M, Shakibi A, Rahbari A, J. Taiwan Inst. Chem. Eng., 42, 180 (2011)
Bidabadi M, Natanzi AHA, Mostafavi SA, Powder Technol., 217, 69 (2012)
Gao W, Mogi T, Sun JH, Yu JL, Dobashi R, Powder Technol., 249, 168 (2013)
Jadidi M, Bidabadi M, Hosseini ME, Proc. Inst. Mech. Eng. Part G, 223, 915 (2009)
Goroshin S, Bidabadi M, Lee JHS, Combust. Flame, 105, 147 (1996)
Hertzberg M, Cashdollar KL, Zlochower IA, Symp. (Int.) Combust., 21, 303 (1988)
Berlad AL, Ross H, Facca L, Tangirala V, Combust. Flame, 82, 449 (1990)
Sun JH, Dobashi R, Hirano T, Symp. (Int.) Combust., 27, 2405 (1998)
Proust C, Experimental determination of the maximum flame temperatures and of the laminar burning velocities for some combustible dust-air mixtures, Proceedings of the Fifth International Colloquium on Dust Explosions, Pultusk, Poland (1993).
Shoshin Y, Dreizin E, Combust. Flame, 133(3), 275 (2003)
Chen ZH, Fan BC, J. Loss Prev. Process Ind., 18(1), 13 (2005)
Goroshin S, Kolbe M, Lee JHS, Symp. (Int.) Combust., 28, 2811 (2000)
Han OS, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T, J. Loss Prev. Process Ind., 13(6), 449 (2000)
Han OS, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T, J. Loss Prev. Process Ind., 14(3), 153 (2001)
Proust C, J. Loss Prev. Process Ind., 19(1), 89 (2006)
Proust C, J. Loss Prev. Process Ind., 19(2-3), 104 (2006)
Bidabadi M, Rahbari A, Combust. Explos., 45, 278 (2009)
Bidabadi M, Rahbari A, J. Mech. Sci. Technol., 23, 2417 (2009)
Bidabadi M, Haghiri A, Rahbari A, Int. J. Therm. Sci., 49, 534 (2010)
Bidabadi M, Shakibi A, Rahbari A, J. Taiwan Inst. Chem. Eng., 42, 180 (2011)
Bidabadi M, Natanzi AHA, Mostafavi SA, Powder Technol., 217, 69 (2012)
Gao W, Mogi T, Sun JH, Yu JL, Dobashi R, Powder Technol., 249, 168 (2013)
Jadidi M, Bidabadi M, Hosseini ME, Proc. Inst. Mech. Eng. Part G, 223, 915 (2009)
Goroshin S, Bidabadi M, Lee JHS, Combust. Flame, 105, 147 (1996)