Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 3, 2014
Accepted December 30, 2014
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Combined adsorption and reduction of Cr(VI) from aqueous solution on polyaniline/multiwalled carbon nanotubes composite
1College of Resource and Environment, Shannxi University of Science & Technology, Xi’an 710021, China 2Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an 710021, China 3, China
wangjiahong@sust.edu.cn
Korean Journal of Chemical Engineering, September 2015, 32(9), 1889-1895(7), 10.1007/s11814-014-0395-6
Download PDF
Abstract
Polyaniline/multiwalled carbon nanotube (PANI-MWCNT) was prepared by bounding polyaniline on the surface of oxidized multiwalled carbon nanotube. The structure and surface properties of synthesized composites were characterized by Fourier transformed infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscope (TEM), and its adsorption capability for aqueous Cr(VI) was also studied. Characterized results showed that polyaniline was successfully anchored on the surface of MWCNT. From adsorption experiments the maximum adsorption amount of Cr(VI) onto PANI-MWCNTs was 28.25, 31.75 and 36.76 mg·g.1 at 15, 25 and 35 oC. Thermodynamic parameters showed that the Cr(VI) adsorption process was endothermic, spontaneous and feasible. Cr(VI) adsorption followed pseudo-second-order kinetics. Cr(VI) adsorption on the adsorbent decreases with increasing solution pH. The presence of anions in solution almost has no effect on Cr(VI) adsorption, indicating good selectivity. XPS analysis confirms that electrostatic interaction, reduction and chelation contribute to enhanced Cr(VI) removal. Cr(VI) loaded absorbent can be readily desorbed in 0.1mol·L.1 of NaOH solution, and the desorption rate was 84.12%.
References
Zhang S, Zeng M, Xu W, Li J, Li J, Xu J, Wang X, J. Chem. Soc.-Dalton Trans., 42, 7854 (2013)
Meunier N, Drogui P, Montane C, Hausler R, Mercier G, Blais JF, J. Hazard. Mater., 137(1), 581 (2006)
Kozlowski CA, Walkowiak W, Water Res., 36, 4870 (2002)
Ruotolo LAM, Santos-Junior DS, Gubulin JC, Water Res., 40, 1555 (2006)
Garg UK, Kaur MP, Garg VK, Sud D, J. Hazard. Mater., 140(1-2), 60 (2007)
Adegoke HI, AmooAdekola F, Fatoki OS, Ximba BJ, Korean J. Chem. Eng., 31(1), 142 (2014)
Gorzin F, Ghoreyshi AA, Korean J. Chem. Eng., 30(8), 1594 (2013)
Konicki W, Pelech I, Mijowska E, Pol. J. Chem. Technol., 16, 87 (2014)
Ramana DKV, Yu JS, Seshaiah K, Chem. Eng. J., 223, 806 (2013)
Yu XY, Luo T, Zhang YX, Jia Y, Zhu BJ, Fu XC, Liu JH, Huang XJ, Acs Appl. Mater. Interf., 3, 2585 (2011)
Mubarak NM, Thines RK, Sajuni NR, Abdullah EC, Sahu JN, Ganesan P, Jayakumar NS, Korean J. Chem. Eng., 31(9), 1582 (2014)
Hu J, Chen CL, Zhu XX, Wang XK, J. Hazard. Mater., 162(2-3), 1542 (2009)
Zhang X, Chen M, Yu Y, Yang T, Wang J, Anal. Methods, 3, 457 (2011)
Kumar R, Ansari MO, Barakat MA, Chem. Eng. J., 228, 748 (2013)
Krishnani KK, Srinives S, Mohapatra BC, Boddu VM, Hao J, Meng X, Mulchandani A, J. Hazard. Mater., 252-253, 99 (2013)
Bhaumik M, Maity A, Srinivasu VV, Onyango MS, Chem. Eng. J., 181-182, 323 (2012)
Li Q, Qian Y, Cui H, Zhang Q, Tang R, Zhai JP, Chem. Eng. J., 173(3), 715 (2011)
Qiu B, Xu C, Sun D, Yi H, Guo J, Zhang X, Qu H, Guerrero M, Wang X, Noel N, Luo Z, Guo Z, Wei S, ACS Sustain Chem. Eng., 2, 2070 (2014)
Tang L, Fang Y, Pang Y, Zeng GM, Wang JJ, Zhou YY, Deng YC, Yang GD, Cai Y, Chen J, Chem. Eng. J., 254, 302 (2014)
Janaki V, Shin MN, Kim SH, Lee KJ, Cho M, Ramasamy AK, Oh BT, Kamala-Kannan S, Cellulose, 21, 463 (2014)
Chen J, Hong X, Zhao Y, Zhang Q, Water Sci. Technol., 70, 678 (2014)
Yang S, Li J, Shao D, Hu J, Wang X, J. Hazard. Mater., 109, 166 (2009)
Salam MA, Burk RC, Appl. Surf. Sci., 255(5), 1975 (2008)
Feng W, Yi W, Xu Y, Lian Y, Wang X, Katsumi Y, Acta Phy. Sin., 52, 1272 (2003)
Wang JH, Ji YF, Ding SL, Ma HR, Han XJ, Chin. J. Chem. Eng., 21(6), 594 (2013)
Atieh MA, Procedia Environmental Sciences, 4, 281 (2011)
Di ZC, Ding J, Peng XJ, Li YH, Luan ZK, Liang J, Chemosphere, 62, 861 (2006)
Wang J, Ding S, Zheng C, Ma H, Ji Y, Desalin. Water Treat., 40, 92 (2012)
Wang JH, Han XJ, Ma HR, Ji YF, Bi LJ, Chem. Eng. J., 173(1), 171 (2011)
Yu WT, Zhang LY, Wang HY, Chai LY, J. Hazard. Mater., 260, 789 (2013)
Meunier N, Drogui P, Montane C, Hausler R, Mercier G, Blais JF, J. Hazard. Mater., 137(1), 581 (2006)
Kozlowski CA, Walkowiak W, Water Res., 36, 4870 (2002)
Ruotolo LAM, Santos-Junior DS, Gubulin JC, Water Res., 40, 1555 (2006)
Garg UK, Kaur MP, Garg VK, Sud D, J. Hazard. Mater., 140(1-2), 60 (2007)
Adegoke HI, AmooAdekola F, Fatoki OS, Ximba BJ, Korean J. Chem. Eng., 31(1), 142 (2014)
Gorzin F, Ghoreyshi AA, Korean J. Chem. Eng., 30(8), 1594 (2013)
Konicki W, Pelech I, Mijowska E, Pol. J. Chem. Technol., 16, 87 (2014)
Ramana DKV, Yu JS, Seshaiah K, Chem. Eng. J., 223, 806 (2013)
Yu XY, Luo T, Zhang YX, Jia Y, Zhu BJ, Fu XC, Liu JH, Huang XJ, Acs Appl. Mater. Interf., 3, 2585 (2011)
Mubarak NM, Thines RK, Sajuni NR, Abdullah EC, Sahu JN, Ganesan P, Jayakumar NS, Korean J. Chem. Eng., 31(9), 1582 (2014)
Hu J, Chen CL, Zhu XX, Wang XK, J. Hazard. Mater., 162(2-3), 1542 (2009)
Zhang X, Chen M, Yu Y, Yang T, Wang J, Anal. Methods, 3, 457 (2011)
Kumar R, Ansari MO, Barakat MA, Chem. Eng. J., 228, 748 (2013)
Krishnani KK, Srinives S, Mohapatra BC, Boddu VM, Hao J, Meng X, Mulchandani A, J. Hazard. Mater., 252-253, 99 (2013)
Bhaumik M, Maity A, Srinivasu VV, Onyango MS, Chem. Eng. J., 181-182, 323 (2012)
Li Q, Qian Y, Cui H, Zhang Q, Tang R, Zhai JP, Chem. Eng. J., 173(3), 715 (2011)
Qiu B, Xu C, Sun D, Yi H, Guo J, Zhang X, Qu H, Guerrero M, Wang X, Noel N, Luo Z, Guo Z, Wei S, ACS Sustain Chem. Eng., 2, 2070 (2014)
Tang L, Fang Y, Pang Y, Zeng GM, Wang JJ, Zhou YY, Deng YC, Yang GD, Cai Y, Chen J, Chem. Eng. J., 254, 302 (2014)
Janaki V, Shin MN, Kim SH, Lee KJ, Cho M, Ramasamy AK, Oh BT, Kamala-Kannan S, Cellulose, 21, 463 (2014)
Chen J, Hong X, Zhao Y, Zhang Q, Water Sci. Technol., 70, 678 (2014)
Yang S, Li J, Shao D, Hu J, Wang X, J. Hazard. Mater., 109, 166 (2009)
Salam MA, Burk RC, Appl. Surf. Sci., 255(5), 1975 (2008)
Feng W, Yi W, Xu Y, Lian Y, Wang X, Katsumi Y, Acta Phy. Sin., 52, 1272 (2003)
Wang JH, Ji YF, Ding SL, Ma HR, Han XJ, Chin. J. Chem. Eng., 21(6), 594 (2013)
Atieh MA, Procedia Environmental Sciences, 4, 281 (2011)
Di ZC, Ding J, Peng XJ, Li YH, Luan ZK, Liang J, Chemosphere, 62, 861 (2006)
Wang J, Ding S, Zheng C, Ma H, Ji Y, Desalin. Water Treat., 40, 92 (2012)
Wang JH, Han XJ, Ma HR, Ji YF, Bi LJ, Chem. Eng. J., 173(1), 171 (2011)
Yu WT, Zhang LY, Wang HY, Chai LY, J. Hazard. Mater., 260, 789 (2013)