ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 17, 2015
Accepted May 30, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Electrochemical degradation of the Acid Orange 10 dye on a Ti/PbO2 anode assessed by response surface methodology

Environment Research Center and Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan 81676-36954, Iran 1Nanotechnology Department, University of Isfahan, Isfahan 81744-73441, Iran 2Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom 37136-49373, Iran 3Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan 81676-36954, Iran
a_ebrahimi@hlth.mui.ac.ir
Korean Journal of Chemical Engineering, January 2016, 33(1), 189-196(8), 10.1007/s11814-015-0115-x
downloadDownload PDF

Abstract

The decolorization and degradation of the synthetic aqueous solution of the Acid Orange 10 (AO10) dye on Ti/PbO2 anode were investigated using the response surface methodology based on central composite design with three variables: current density, pH, and supporting electrolyte concentration. The Ti/PbO2 electrode was prepared by the electrochemical deposition method. The optimum conditions for AO10 decolorization in synthetic dye solution were electrolyte concentration of 117.04 mM, pH of 12.05, and current density of 73.64 mA cm.2. The results indicated that the most effective factor for AO10 degradation was current density. Furthermore, the color removal efficiency significantly increased with increasing current density. To measure AO10 mineralization under optimum conditions, the chemical oxygen demand (COD) and total organic carbon (TOC) removal were evaluated. Under these conditions, decolorization was completed and 63% removal was recorded for COD and 60% for TOC after 100 min of electrolysis.

References

dos Santos AB, Cervantes FJ, van Lier JB, Bioresour. Technol., 98(12), 2369 (2007)
Mondal S, Environ. Eng. Sci., 25, 383 (2008)
Jovic-Jivicic N, Milutinovic-Nikolic A, Bankovic P, Mojovic Z, Zunic M, Grzetic I, Jovanovic D, Appl. Clay Sci., 47, 452 (2010)
Entezari MH, Al-Hoseini ZS, Ashraf N, Ultrason. Sonochem., 15, 433 (2008)
Meric S, Kaptan D, Olmez T, Chemosphere, 54, 435 (2004)
Saratale R, Saratale G, Chang J, Govindwar S, J. Taiwan Inst. Chem. Eng., 42, 138 (2011)
Xu XR, Li XZ, Sep. Purif. Technol., 72(1), 105 (2010)
Abdelkader NBH, Bentouami A, Derriche Z, Bettahar N, de Menorval LC, Chem. Eng. J., 169(1-3), 231 (2011)
Giri AK, Mukherjee A, Talukder G, Sharma A, Toxicol. Lett., 44, 253 (1988)
Sun SP, Li CJ, Sun JH, Shi SH, Fan MH, Zhou Q, J. Hazard. Mater., 161(2-3), 1052 (2009)
Martinez-Huitle CA, Brillas E, Appl. Catal. B: Environ., 87(3-4), 105 (2009)
Raghu S, Basha CA, J. Hazard. Mater., 139(2), 381 (2007)
Rodgers JD, Jedral W, Bunce NJ, Environ. Sci. Technol., 33, 1453 (1999)
Rajkumar D, Song BJ, Kim JG, Dyes Pigment., 72 (2007)
Xu H, Li AP, Qi Q, Jiang W, Sun YM, Korean J. Chem. Eng., 29(9), 1178 (2012)
Aquino JM, Pereira GF, Rocha RC, Bocchi N, Biaggio SR, J. Hazard. Mater., 192(3), 1275 (2011)
Murphy OJ, Hitchens GD, Kaba L, Verostko CE, Water Res., 26, 443 (1992)
Vlyssides A, Loizidou M, Karlis P, Zorpas A, Papaioannou D, J. Hazard. Mater., 70, 41 (1999)
Wang J, Deo RP, Poulin P, Mangey M, J. Am. Chem. Soc., 125(48), 14706 (2003)
Carneiro PA, Osugi ME, Fugivara CIS, Boralle N, Furlan M, Zanoni MVB, Chemosphere, 59, 431 (2005)
Sanroman M, Pazos M, Ricart M, Cameselle C, Chemosphere, 57, 233 (2004)
Xiong Y, Strunk PJ, Xia H, Zhu X, Karlsson HT, Water Res., 35, 4226 (2001)
Santos V, Morao A, Pacheco MJ, Ciriaco L, Lopes A, J. Environ. Eng. Manage., 18, 193 (2008)
Cao JL, Zhao HY, Cao FH, Zhang JQ, Cao CN, Electrochim. Acta, 54(9), 2595 (2009)
Comninellis C, Chen G, Electrochemistry for the Environment, Springer (2010).
Panizza M, Cerisola G, Chem. Rev., 109(12), 6541 (2009)
Siedlecka EM, Stolte S, Golebiowski M, Nienstedt A, Stepnowski P, Thoming J, Sep. Purif. Technol., 101, 26 (2012)
Radha K, Sridevi V, Kalaivani K, Raj M, Desalin. Water Treat., 7, 6 (2009)
Andrade LS, Tasso TT, da Silva DL, Rocha RC, Bocchi N, Biaggio SR, Electrochim. Acta, 54(7), 2024 (2009)
Montgomery DC, Design and analysis of experiments, 7th Ed., John Wiley & Sons, New York (2009).
Aquino JM, Rocha-Filho RC, Bocchi N, Biaggio SR, J. Environ. Chem. Eng., 1, 954 (2013)
Fernandes A, Morao A, Magrinho M, Lopes A, Goncalves I, Dyes Pigment., 61, 287 (2004)
Polcaro AM, Palmas S, Renoldi F, Mascia M, J. Appl. Electrochem., 29(2), 147 (1999)
Rio AD, Benimeli M, Molina J, Bonastre J, Cases F, Int. J. Electrochem. Sci., 7, 13074 (2012)
Ghalwa NA, Gaber M, Khedr AM, Salem MF, Int. J. Electrochem. Sci., 7, 6044 (2012)
Xu L, Guo Z, Du LS, He J, Electrochim. Acta, 97, 150 (2013)
Myers RH, Montgomery DC, Anderson-Cook CM, Response surface methodology: Process and product optimization using designed experiments, Wiley (2009).
Anderson TW, Darling DA, J. Am. Stat. Assoc., 49, 765 (1954)
Breusch TS, Pagan AR, Econometrica, 47, 1287 (1979)
Durbin J, Watson GS, Biometrika, 37, 409 (1950)
Durbin J, Watson GS, Biometrika, 38, 159 (1951)
Efron B, Gong G, J. Am. Stat. Assoc., 37, 36 (1983)
Kutner MH, Nachtsheim C, Neter J, Applied linear regression models, McGraw-Hill/Irwin (2004).
Zhang C, Jiang YH, Li YL, Hu ZX, Zhou L, Zhou MH, Chem. Eng. J., 228, 455 (2013)
Dai QZ, Shen H, Xia YJ, Chen F, Wang JD, Chen JM, Sep. Purif. Technol., 104, 9 (2013)
Niu J, Maharana D, Xu J, Chai Z, Bao Y, J. Environ. Sci., 25, 1424 (2013)
Zhong C, Wei K, Han W, Wang L, Sun X, Li J, J. Electroanal. Chem., 705, 68 (2013)
Zhou MH, He JJ, J. Hazard. Mater., 153(1-2), 357 (2008)
Djafarzadeh N, Safarpour M, Khataee A, Korean J. Chem. Eng., 31(5), 785 (2014)
Niu J, Bao Y, Li Y, Chai Z, Chemosphere, 92, 1571 (2013)
Shao D, Liang JD, Cui XM, Xu H, Yan W, Chem. Eng. J., 244, 288 (2014)
Alvarez-Guerra E, Dominguez-Ramos A, Irabien A, Chem. Eng. Res. Des., 89(12A), 2679 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로