Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 16, 2015
Accepted April 23, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Enhancement of lipid production in marine microalga Tetraselmis sp. through salinity variation
Department of Environmental Engineering and Energy, Myongji University, Yongin 449-728, Korea
Korean Journal of Chemical Engineering, January 2016, 33(1), 230-237(8), 10.1007/s11814-015-0089-8
Download PDF
Abstract
The objective of this study was to enhance the lipid productivity in microalga Tetraselmis sp. through the salinity variation during cultivation. When marine alga Tetraselmis sp. was cultivated in a wide range of salinities, 0 through 70 practical salinity unit (PSU), enriched with F/2 medium, relatively low salinities below 35 PSU resulted in higher growth rates and lipid productivities under both N-deficient and -sufficient conditions, as compared to high salinities above 45 PSU. Nitrogen limitation did not stimulate lipid production in this species. Although high salinity increased lipid content, overall lipid productivities were lowered than those under low salinity conditions due to the decreased biomass production. When the salinity shifted from 35 to 22 PSU during cultivation, total lipid content increased from 20 to 26 (w/w) % within four days, and no significant change of fatty acids composition was observed.
References
Kim JK, Um BH, Kim TH, Korean J. Chem. Eng., 29(2), 209 (2012)
Asadollahzadeh MJ, Ardjmand M, Seafkordi AA, Heydarian SM, Korean J. Chem. Eng., 31(8), 1425 (2014)
Kim G, Choi W, Lee K, Biochem. Eng. J., 78, 18 (2013)
Amaro HM, Guedes AC, Malcata FX, Appl. Energy, 88(10), 3402 (2011)
Kim G, Mujtaba G, Rizwan M, Lee K, Appl. Chem. Eng., 25(6), 553 (2014)
Suali E, Sarbatly R, Renew. Sust. Energ. Rev., 16, 4316 (2012)
Mujtaba G, Choi W, Lee CG, Lee K, Bioresour. Technol., 123, 279 (2012)
Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR, Biotechnol. Bioeng., 102(1), 100 (2009)
Chen M, Tang HY, Ma HZ, Holland TC, Ng KYS, Salley SO, Bioresour. Technol., 102(2), 1649 (2011)
Mohan SV, Devi MP, Bioresour. Technol., 165, 288 (2014)
Bartley ML, Boeing WJ, Corcoran AA, Holguin FO, Schaub T, Biomass Bioenerg., 54, 83 (2013)
Kaewkannetra P, Enmak P, Chiu T, Biotechnol. Bioeng., 17, 591 (2012)
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A, Plant J., 52, 621 (2008)
Ho SH, Chen CY, Chang JS, Bioresour. Technol., 113, 244 (2012)
Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH, Bioresour. Technol., 124, 217 (2012)
Huerlimann R, de Nys R, Heimann K, Biotechnol. Bioeng., 107(2), 245 (2010)
Lee CG, Sung DH, Korean Patent (Pending) 10-2012-0085961 (2012).
Yao CH, Ai JN, Cao XP, Xue S, Zhang W, Bioresour. Technol., 118, 438 (2012)
Bondioli P, Della Bella L, Rivolta G, Zittelli GC, Bassi N, Rodolfi L, Casini D, Prussi M, Chiaramonti D, Tredici MR, Bioresour. Technol., 114, 567 (2012)
Zhu CJ, Lee YK, J. Appl. Phycol., 9, 189 (1997)
Bligh EG, Dyer WJ, Can. J. Biochem. Physiol., 37, 911 (1959)
Wychen SV, Laurens LML, Determination of total lipids as fatty acid methyl esters (FAME) by in situ transesterification, Laboratory Analytical Procedure, NREL, USA (2013).
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F, Anal. Chem., 28, 350 (1956)
Jiang Y, Chen F, J. Ind. Microbiol. Biotechnol., 23, 508 (1999)
Kirst GO, Ann. Rev. Plant Biol., 41, 21 (1990)
Chen GQ, Jiang Y, Chen F, J. Phycol., 44, 1309 (2008)
Yen HW, Hu IC, Chen CY, Chang JS, Design of photobioreactors for algal cultivation, In: Pandey A, Lee DJ, Chisti Y, Soccol CR (Eds.), Biofuels from Algae, Elsevier, Burlington (2014).
Takagi M, Karseno, Yoshida T, J. Biosci. Bioeng., 101(3), 223 (2006)
Gorain PC, Bagchi SK, Mallick N, Environ. Technol., 34, 1887 (2013)
Zhu L, Zhang X, Ji L, Song X, Kuang C, Process Biochem., 42, 210 (2007)
Azachi M, Sadka A, Fisher M, Goldshlad P, Gokhman I, Zamir A, Plant Physiol., 129, 1320 (2002)
Linda EG, James MG, Lee WW, Algae. 2nd Ed., Pearson (2009).
Klok AJ, Lamers PP, Martens DE, Draaisma RB, Wiffels PR, Trends Biotechnol., 32, 521 (2014)
Xu WQ, Beardall J, Phytochemistry, 45, 655 (1997)
Renaud SM, Parry DL, J. Appl. Phycol., 6, 347 (1994)
Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S, Appl. Microbiol. Biotechnol., 90(4), 1429 (2011)
Xiao M, Shin HJ, Dong Q, Korean J. Chem. Eng., 30(12), 2119 (2013)
Tang HY, Abunasser N, Garcia MED, Chen M, Ng KYS, Salley SO, Appl. Energy, 88(10), 3324 (2011)
Asadollahzadeh MJ, Ardjmand M, Seafkordi AA, Heydarian SM, Korean J. Chem. Eng., 31(8), 1425 (2014)
Kim G, Choi W, Lee K, Biochem. Eng. J., 78, 18 (2013)
Amaro HM, Guedes AC, Malcata FX, Appl. Energy, 88(10), 3402 (2011)
Kim G, Mujtaba G, Rizwan M, Lee K, Appl. Chem. Eng., 25(6), 553 (2014)
Suali E, Sarbatly R, Renew. Sust. Energ. Rev., 16, 4316 (2012)
Mujtaba G, Choi W, Lee CG, Lee K, Bioresour. Technol., 123, 279 (2012)
Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR, Biotechnol. Bioeng., 102(1), 100 (2009)
Chen M, Tang HY, Ma HZ, Holland TC, Ng KYS, Salley SO, Bioresour. Technol., 102(2), 1649 (2011)
Mohan SV, Devi MP, Bioresour. Technol., 165, 288 (2014)
Bartley ML, Boeing WJ, Corcoran AA, Holguin FO, Schaub T, Biomass Bioenerg., 54, 83 (2013)
Kaewkannetra P, Enmak P, Chiu T, Biotechnol. Bioeng., 17, 591 (2012)
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A, Plant J., 52, 621 (2008)
Ho SH, Chen CY, Chang JS, Bioresour. Technol., 113, 244 (2012)
Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH, Bioresour. Technol., 124, 217 (2012)
Huerlimann R, de Nys R, Heimann K, Biotechnol. Bioeng., 107(2), 245 (2010)
Lee CG, Sung DH, Korean Patent (Pending) 10-2012-0085961 (2012).
Yao CH, Ai JN, Cao XP, Xue S, Zhang W, Bioresour. Technol., 118, 438 (2012)
Bondioli P, Della Bella L, Rivolta G, Zittelli GC, Bassi N, Rodolfi L, Casini D, Prussi M, Chiaramonti D, Tredici MR, Bioresour. Technol., 114, 567 (2012)
Zhu CJ, Lee YK, J. Appl. Phycol., 9, 189 (1997)
Bligh EG, Dyer WJ, Can. J. Biochem. Physiol., 37, 911 (1959)
Wychen SV, Laurens LML, Determination of total lipids as fatty acid methyl esters (FAME) by in situ transesterification, Laboratory Analytical Procedure, NREL, USA (2013).
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F, Anal. Chem., 28, 350 (1956)
Jiang Y, Chen F, J. Ind. Microbiol. Biotechnol., 23, 508 (1999)
Kirst GO, Ann. Rev. Plant Biol., 41, 21 (1990)
Chen GQ, Jiang Y, Chen F, J. Phycol., 44, 1309 (2008)
Yen HW, Hu IC, Chen CY, Chang JS, Design of photobioreactors for algal cultivation, In: Pandey A, Lee DJ, Chisti Y, Soccol CR (Eds.), Biofuels from Algae, Elsevier, Burlington (2014).
Takagi M, Karseno, Yoshida T, J. Biosci. Bioeng., 101(3), 223 (2006)
Gorain PC, Bagchi SK, Mallick N, Environ. Technol., 34, 1887 (2013)
Zhu L, Zhang X, Ji L, Song X, Kuang C, Process Biochem., 42, 210 (2007)
Azachi M, Sadka A, Fisher M, Goldshlad P, Gokhman I, Zamir A, Plant Physiol., 129, 1320 (2002)
Linda EG, James MG, Lee WW, Algae. 2nd Ed., Pearson (2009).
Klok AJ, Lamers PP, Martens DE, Draaisma RB, Wiffels PR, Trends Biotechnol., 32, 521 (2014)
Xu WQ, Beardall J, Phytochemistry, 45, 655 (1997)
Renaud SM, Parry DL, J. Appl. Phycol., 6, 347 (1994)
Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S, Appl. Microbiol. Biotechnol., 90(4), 1429 (2011)
Xiao M, Shin HJ, Dong Q, Korean J. Chem. Eng., 30(12), 2119 (2013)
Tang HY, Abunasser N, Garcia MED, Chen M, Ng KYS, Salley SO, Appl. Energy, 88(10), 3324 (2011)