Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 28, 2015
Accepted July 10, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Excess volume and excess enthalpy of binary mixtures composed of 1,2-dichloropropane and 1-alkanol (C5-C8)
School of Nano & Materials Science and Engineering, Kyungpook National University, 386 Gajang-dong, Sangju 742-711, Korea
mg_kim@knu.ac.kr
Korean Journal of Chemical Engineering, January 2016, 33(1), 271-276(6), 10.1007/s11814-015-0155-2
Download PDF
Abstract
The excess molar volumes and excess molar enthalpies at T=298.15 K and atmospheric pressure for the binary systems {CH3CHClCH2Cl (1)+CH3(CH2)n.1OH (2)} (n=5 to 8) have been determined over the whole range of composition from the density and heat flux measurements using a digital vibrating-tube densimeter and an isothermal calorimeter, respectively. The measured excess molar volumes of all binary mixtures showed positive symmetrical trend with values increasing with chain length of 1-alkanol. Similarly, excess enthalpy values of all binary mixtures showed skewed endothermic behavior with values increasing with chain length of 1-alkanol. The maxima of excess molar enthalpy values were observed around x1=0.65 with excess enthalpy value ranging from 1,356.8 J/mol (1-pentanol) to 1,543.4 J/mol (1-octanol). The experimental results of both Hm E and Vm E are fitted to a modified version of Redlich-Kister equation using the Pade approximant to correlate the composition dependence. The experimental Hm E data were also fitted to three local-composition models (Wilson, NRTL, and UNIQUAC). The correlation of excess enthalpy data in these binary systems using UNIQUAC model provides the most appropriate results.
Keywords
References
Narendra K, Srinivasu C, Kalpana C, Murthy PN, J. Therm. Anal. Calorim., 107, 25 (2012)
Rezanova EN, Kammerer K, Lichtenthaler RN, J. Chem. Eng. Data, 45, 124 (2000)
Mchaweh A, Alsaygh A, Nasrifar K, Moshfeghian M, Fluid Phase Equilib., 224(2), 157 (2004)
Kim Y, Kim M, Korean Chem. Eng. Res., 42(4), 426 (2004)
Kim J, Kim M, Korean Chem. Eng. Res., 44(5), 444 (2006)
Sen D, Kim MG, Thermochim. Acta, 471(1-2), 20 (2008)
Sen D, Kim MG, Korean J. Chem. Eng., 26(3), 806 (2009)
Sen D, Kim MG, Fluid Phase Equilib., 280(1-2), 94 (2009)
Sen D, Kim MG, Fluid Phase Equilib., 285(1-2), 30 (2009)
Sen D, Kim MG, Fluid Phase Equilib., 303(1), 85 (2011)
Kim MG, Korean J. Chem. Eng., 29(9), 1253 (2012)
Kim MG, Korean J. Chem. Eng., 31(2), 315 (2014)
Morrison RT, Boyd RN, Organic chemistry, 6th Ed., Prentice Hall, NJ (1992).
Maryott AA, Smith ER, Table of Dielectric Constants of Pure Liquids, National Bureau of Standards Circular 514, Washington D.C. (1951).
Riddick JA, Bunger WB, Sakano TK (Eds.), Organic Solvents, vol. 2, 4th Ed., Wiley-Interscience, New York (1986).
Redlich O, Kister AT, Ind. Eng. Chem., 40, 345 (1948)
Baker GA, Graves-Morris P, Pade Approximants, Cambridge Univ. Press, New York (1996).
Wilson GM, J. Am. Chem. Soc., 86, 127 (1964)
Renon H, Prausnitz JM, AIChE J., 14, 135 (1968)
Abrams DS, Prausnitz JM, AIChE J., 21, 116 (1975)
O’Neil MJ, Heckelman PE, Koch CB, Roman KJ (Eds.), Merck Index, 14th Ed., Merck Research Laboratories, NJ (2006).
Poling BE, Prausnitz JM, O’Connell JP, The Properties of Gas and Liquids, 5th Ed., McGraw-Hill, New York (2000).
Bevington P, Data Reduction and Error Analysis for the Physical Sciences, 3rd Ed., McGraw-Hill, New York (2003).
Ott JB, Sipowska JT, J. Chem. Eng. Data, 41(5), 987 (1996)
Rezanova EN, Kammerer K, Lichtenthaler RN, J. Chem. Eng. Data, 45, 124 (2000)
Mchaweh A, Alsaygh A, Nasrifar K, Moshfeghian M, Fluid Phase Equilib., 224(2), 157 (2004)
Kim Y, Kim M, Korean Chem. Eng. Res., 42(4), 426 (2004)
Kim J, Kim M, Korean Chem. Eng. Res., 44(5), 444 (2006)
Sen D, Kim MG, Thermochim. Acta, 471(1-2), 20 (2008)
Sen D, Kim MG, Korean J. Chem. Eng., 26(3), 806 (2009)
Sen D, Kim MG, Fluid Phase Equilib., 280(1-2), 94 (2009)
Sen D, Kim MG, Fluid Phase Equilib., 285(1-2), 30 (2009)
Sen D, Kim MG, Fluid Phase Equilib., 303(1), 85 (2011)
Kim MG, Korean J. Chem. Eng., 29(9), 1253 (2012)
Kim MG, Korean J. Chem. Eng., 31(2), 315 (2014)
Morrison RT, Boyd RN, Organic chemistry, 6th Ed., Prentice Hall, NJ (1992).
Maryott AA, Smith ER, Table of Dielectric Constants of Pure Liquids, National Bureau of Standards Circular 514, Washington D.C. (1951).
Riddick JA, Bunger WB, Sakano TK (Eds.), Organic Solvents, vol. 2, 4th Ed., Wiley-Interscience, New York (1986).
Redlich O, Kister AT, Ind. Eng. Chem., 40, 345 (1948)
Baker GA, Graves-Morris P, Pade Approximants, Cambridge Univ. Press, New York (1996).
Wilson GM, J. Am. Chem. Soc., 86, 127 (1964)
Renon H, Prausnitz JM, AIChE J., 14, 135 (1968)
Abrams DS, Prausnitz JM, AIChE J., 21, 116 (1975)
O’Neil MJ, Heckelman PE, Koch CB, Roman KJ (Eds.), Merck Index, 14th Ed., Merck Research Laboratories, NJ (2006).
Poling BE, Prausnitz JM, O’Connell JP, The Properties of Gas and Liquids, 5th Ed., McGraw-Hill, New York (2000).
Bevington P, Data Reduction and Error Analysis for the Physical Sciences, 3rd Ed., McGraw-Hill, New York (2003).
Ott JB, Sipowska JT, J. Chem. Eng. Data, 41(5), 987 (1996)