Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 23, 2015
Accepted September 30, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Phase behavior for the poly(alkyl methacrylate)+supercritical CO2+DME mixture at high pressures
Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, Korea
Korean Journal of Chemical Engineering, January 2016, 33(1), 277-284(8), 10.1007/s11814-015-0208-6
Download PDF
Abstract
The phase behavior curves of binary and ternary system were measured for poly(alkyl methacrylate) in supercritical CO2, as well as for the poly(alkyl methacrylate)+dimethyl ether (DME) (or 1-butene) in CO2. The solubility curves are reported for the poly(alkyl methacrylate)+DME in supercritical CO2 at temperature from (300 to 465) K and a pressure from (3.66 to 248) MPa. Also, The high-pressure static-type apparatus of cloud-point curve was tested by comparing the measured phase behavior data of the poly(methyl methacrylate) [PMMA]+CO2+20.0 and 30.4 wt% methyl methacrylate (MMA) system with literature data of 10.4, 28.8 and 48.4 wt% MMA concentration. The phase behavior data for the poly(alkyl methacrylate)+CO2+DME mixture were measured in changes of the pressure-temperature (p, T) slope and with DME concentrations. Also, the cloud-point pressure for the poly(alkyl methacrylate)+1-butene solution containing supercritical CO2 shows from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region at concentration range from (0.0 to 95) wt% 1-butene at below 455 K and at below 245MPa.
Keywords
References
Beckman EJ, J. Supercrit. Fluids, 28(2-3), 121 (2004)
Kendall JL, Canelas DA, Young JL, DeSimone JM, Chem. Rev., 99(2), 543 (1999)
Luo JJ, Wu K, Cook T, Li J, Polym. Mater. Sci. Eng., 91, 711 (2004)
Yoon SD, Kim CR, Byun HS, Fluid Phase Equilib., 365, 97 (2014)
Kazarian S, Drugs Pharm. Sci., 138, 343 (2004)
Lee JC, Kim CR, Byun HS, Korean J. Chem. Eng., 31(12), 2266 (2014)
Shieh YT, Liu KH, J. Polym. Sci. B: Polym. Phys., 42(13), 2479 (2004)
Rindfleisch F, DiNoia TP, McHugh MA, J. Phys. Chem., 100(38), 15581 (1996)
Liu S, Lee HY, Yoon SD, Yoo KP, Byun HS, Ind. Eng. Chem. Res., 48(16), 7821 (2009)
Kirby CF, McHugh MA, Chem. Rev., 99(2), 565 (1999)
Dohrn R, Brunner G, Fluid Phase Equilib., 106(1-2), 213 (1995)
Christov M, Dohrn R, Fluid Phase Equilib., 202(1), 153 (2002)
Dohrn R, Peper S, Fonseca JMS, Fluid Phase Equilib., 288(1-2), 1 (2010)
Fonseca JMS, Dohrn R, Peper S, Fluid Phase Equilib., 300(1-2), 1 (2011)
Haschets CW, Shine AD, Macromolecules, 26, 5052 (1993)
Byun HS, McHugh MA, Ind. Eng. Chem. Res., 39(12), 4658 (2000)
Maderek E, Schulz GV, Wolf BA, Eur. Polym. J., 19, 963 (1983)
Lora M, McHugh MA, Fluid Phase Equilib., 157(2), 285 (1999)
Jang YS, Choi YS, Byun HS, Korean J. Chem. Eng., 32(5), 958 (2015)
Kim SE, Yoon SD, Yoo KP, Byun HS, Korean J. Chem. Eng., 26(1), 199 (2009)
Behrenst PK, Sandle SI, J. Chem. Eng. Data, 28, 52 (1983)
Tsang CY, Streett WB, J. Chem. Eng. Data, 26, 155 (1981)
Nam SG, Lee BC, Korean J. Chem. Eng., 30(2), 474 (2013)
Chirico RD, Frenkel M, Diky VV, Marsh KN, Wilhoit RC, J. Chem. Eng. Data, 48(5), 1344 (2003)
Yoon SD, Byun HS, J. Chem. Thermodyn., 71, 91 (2014)
Poling BE, Prausnitz JM, O’Connell JP, The Properties of Gases and Liquid, 5th Ed.; McGraw-Hill, New York (2001).
Albrecht KL, Stein FP, Han SJ, Gregg CJ, Radosz M, Fluid Phase Equilib., 117(1-2), 84 (1996)
Wolf BA, Blaum GJ, J. Polym. Sci. B: Polym. Phys., 13, 1115 (1975)
Patterson D, Pure Appl. Chem., 31, 133 (1972)
Kendall JL, Canelas DA, Young JL, DeSimone JM, Chem. Rev., 99(2), 543 (1999)
Luo JJ, Wu K, Cook T, Li J, Polym. Mater. Sci. Eng., 91, 711 (2004)
Yoon SD, Kim CR, Byun HS, Fluid Phase Equilib., 365, 97 (2014)
Kazarian S, Drugs Pharm. Sci., 138, 343 (2004)
Lee JC, Kim CR, Byun HS, Korean J. Chem. Eng., 31(12), 2266 (2014)
Shieh YT, Liu KH, J. Polym. Sci. B: Polym. Phys., 42(13), 2479 (2004)
Rindfleisch F, DiNoia TP, McHugh MA, J. Phys. Chem., 100(38), 15581 (1996)
Liu S, Lee HY, Yoon SD, Yoo KP, Byun HS, Ind. Eng. Chem. Res., 48(16), 7821 (2009)
Kirby CF, McHugh MA, Chem. Rev., 99(2), 565 (1999)
Dohrn R, Brunner G, Fluid Phase Equilib., 106(1-2), 213 (1995)
Christov M, Dohrn R, Fluid Phase Equilib., 202(1), 153 (2002)
Dohrn R, Peper S, Fonseca JMS, Fluid Phase Equilib., 288(1-2), 1 (2010)
Fonseca JMS, Dohrn R, Peper S, Fluid Phase Equilib., 300(1-2), 1 (2011)
Haschets CW, Shine AD, Macromolecules, 26, 5052 (1993)
Byun HS, McHugh MA, Ind. Eng. Chem. Res., 39(12), 4658 (2000)
Maderek E, Schulz GV, Wolf BA, Eur. Polym. J., 19, 963 (1983)
Lora M, McHugh MA, Fluid Phase Equilib., 157(2), 285 (1999)
Jang YS, Choi YS, Byun HS, Korean J. Chem. Eng., 32(5), 958 (2015)
Kim SE, Yoon SD, Yoo KP, Byun HS, Korean J. Chem. Eng., 26(1), 199 (2009)
Behrenst PK, Sandle SI, J. Chem. Eng. Data, 28, 52 (1983)
Tsang CY, Streett WB, J. Chem. Eng. Data, 26, 155 (1981)
Nam SG, Lee BC, Korean J. Chem. Eng., 30(2), 474 (2013)
Chirico RD, Frenkel M, Diky VV, Marsh KN, Wilhoit RC, J. Chem. Eng. Data, 48(5), 1344 (2003)
Yoon SD, Byun HS, J. Chem. Thermodyn., 71, 91 (2014)
Poling BE, Prausnitz JM, O’Connell JP, The Properties of Gases and Liquid, 5th Ed.; McGraw-Hill, New York (2001).
Albrecht KL, Stein FP, Han SJ, Gregg CJ, Radosz M, Fluid Phase Equilib., 117(1-2), 84 (1996)
Wolf BA, Blaum GJ, J. Polym. Sci. B: Polym. Phys., 13, 1115 (1975)
Patterson D, Pure Appl. Chem., 31, 133 (1972)