ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 17, 2015
Accepted June 8, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

High surface area polyaniline nanofiber synthesized in compressed CO2 and its application to a hydrogen sensor

School of Chemical Engineering, University of Ulsan, Ulsan 680-749, Korea
swkim@ulsan.ac.kr
Korean Journal of Chemical Engineering, January 2016, 33(1), 290-298(9), 10.1007/s11814-015-0122-y
downloadDownload PDF

Abstract

High surface area polyaniline (HSA PANI) nanofibers were synthesized through oxidative polymerization of aniline in compressed CO2 using cobalt chloride as an additive. SEM and TEM analyses showed that the HSA PANI nanofibers had a coarse surface of very thin nanofibers. The HSA PANI nanofibers had a fairly uniform diameter range of 70-90 nm with a length of 0.5-1 μm, and showed an electrical conductivity (EC) of 3.46 S/cm. TGA analysis revealed that the HSA PANI nanofibers had more doping substances than did ordinary PANI nanofibers. In the case of the HSA PANI nanofibers, direct measurement of the surface area using gas adsorption method showed high value of 68.4m2/g, which was nearly twice that of ordinary PANI nanofibers. The HSA PANI nanofibers were used to fabricate the hydrogen sensor, exhibiting a large increase in resistance upon exposure to hydrogen gas. The hydrogen sensor in this work showed excellent characteristics, such as high sensitivity and short response time. The limit of detection (LOD) and limit of quantification (LOQ) of the hydrogen sensor were very low to show 40 ppm and 133 ppm of hydrogen, respectively.

References

Huang JX, Virji S, Weiller BH, Kaner RB, J. Am. Chem. Soc., 125(2), 314 (2003)
Arsat R, Yu XF, Li YX, Wlodarski W, Kalantar-Zadeh K, Sens. Actuators B-Chem., 137, 529 (2009)
Sadek AZ, Wlodarski W, Kalantar-Zadeh K, Baker C, Kaner RB, Sens. Actuators A-Phys., 139, 53 (2007)
Zhang H, Liu R, Zheng J, Synth. Met., 167, 5 (2013)
Khuspe GD, Navale ST, Cougule MA, Patil VB, Synth. Met., 185, 1 (2013)
Murugan C, Subramanian E, Padiyan DP, Synth. Met., 192, 106 (2014)
Kumar PA, Chakraborty S, Ray M, Chem. Eng. J., 141(1-3), 130 (2008)
Mahanta D, Madras G, Radhakrishnan S, Patil S, J. Phys. Chem. B, 112(33), 10153 (2008)
Ruotolo LAM, Gubulin JC, React. Funct. Polym., 62(2), 141 (2005)
Lashkenari MS, Davodi B, Eisazadeh H, Korean J. Chem. Eng., 28(7), 1532 (2011)
Srinivasan SS, Ratnadurai R, Niemann MU, Phani AR, Goswami DY, Stefanakos EK, Int. J. Hydrog. Energy, 35(1), 225 (2010)
Li S, Zhang G, Jing G, Kan J, Synth. Met., 158, 242 (2008)
Huang JX, Virji S, Weiller BH, Kaner RB, J. Am. Chem. Soc., 125(2), 314 (2003)
Yan XB, Han ZJ, Yang Y, Tay BK, Sens. Actuators B-Chem., 123, 107 (2007)
Mi HY, Zhang XG, Yang SD, Ye XG, Luo JM, Mater. Chem. Phys., 112(1), 127 (2008)
Mi HY, Zhang XG, Ye XG, Yang SD, J. Power Sources, 176(1), 403 (2008)
Ciric-Marjanovic G, Synth. Met., 177, 1 (2013)
Tran HD, D’Arcy JM, Wang Y, Beltramo PJ, Strong VA, Kaner RB, J. Mater. Chem., 21, 3534 (2011)
Stejskal J, Sapurina I, Trchova M, Prog. Polym. Sci, 35, 1420 (2010)
Venancio EC, Wang PC, MacDiarmid AG, Synth. Met., 156, 357 (2006)
Pham QM, Kim JS, Kim S, Synth. Met., 160, 394 (2010)
Zhang Z, Wei Z, Zhang L, Wan M, Acta Mater., 53, 1373 (2005)
Li GC, Pang SP, Xie GW, Wang ZB, Peng HR, Zhang ZK, Polymer, 47(4), 1456 (2006)
Guo Y, Zhou Y, Eur. Polym. J., 43, 2292 (2007)
Thanpitcha T, Sirivat A, Jamieson AM, Rujiravanit R, Eur. Polym. J., 44, 3423 (2008)
Zhang Z, Deng J, Yu L, Wan M, Synth. Met., 158, 712 (2008)
Panella B, Kossykh L, Dettlaff-Weglikowska U, Hirscher M, Zerbi G, Roth S, Synth. Met., 151, 208 (2005)
Jurczyk MU, Kumar A, Srinivasan S, Stefanakos E, Int. J. Hydrog. Energy, 32(8), 1010 (2007)
Cho SJ, Choo K, Kim DP, Kim JW, Catal. Today, 120(3-4), 336 (2007)
Germain J, Frechet JMJ, Svec F, J. Mater. Chem., 17, 4989 (2007)
Rahy A, Rguig T, Cho SJ, Bunker CE, Yang DJ, Synth. Met., 161, 280 (2011)
Virji S, Kaner RB, Weiller BH, J. Phys. Chem. B, 110(44), 22266 (2006)
Fowler JD, Virji S, Kaner RB, Weiller BH, J. Phys. Chem. C, 113, 6444 (2009)
Wang PC, Dan YP, Liu LH, Mater. Chem. Phys., 144(1-2), 155 (2014)
Kendall JL, Canelas DA, Young JL, DeSimone JM, Chem. Rev., 99(2), 543 (1999)
Cooper AI, J. Mater. Chem., 10, 207 (2000)
Beckman EJ, J. Supercrit. Fluids, 28(2-3), 121 (2004)
Nalawade SP, Picchioni F, Janssen LPBM, Prog. Polym. Sci, 31, 19 (2006)
Kim MY, Yoo KP, Lim JS, Korean J. Chem. Eng., 24(5), 860 (2007)
Masters JG, Sun Y, MacDiarmid AG, Epstein AJ, Synth. Met., 41, 711 (1991)
Wang PC, Huang Z, MacDiarmid AG, Synth. Met., 101, 852 (1999)
Wang PC, Venancio EC, Sarno DM, MacDiarmid AG, React. Funct. Polym., 69(4), 217 (2009)
Jing X, Wang Y, Wu D, Qiang J, Ultrason. Sonochem., 14, 75 (2007)
Chiou NR, Epstein AJ, Synth. Met., 153, 69 (2005)
Rahy A, Sakrout M, Manohar S, Cho SJ, Ferraris J, Yang DJ, Chem. Mater., 20, 4808 (2008)
Tran HD, Wang Y, D’Arcy JM, Kaner RB, ACS Nano, 2, 1841 (2008)
Wang YY, Jing XL, J. Phys. Chem. B, 112(4), 1157 (2008)
Zhang X, Chan-Yu-King R, Jose A, Manohar SK, Synth. Met., 145, 23 (2004)
Chiou NR, Epstein AJ, Adv. Mater., 17(13), 1679 (2005)
Gupta K, Chakraborty G, Ghatak S, Jana PC, Meikap AK, J. Appl. Polym. Sci., 115(5), 2911 (2010)
Zhang D, Polym. Test, 26, 9 (2007)
Bhadra S, Khastgir D, Polym. Degrad. Stabil., 92, 1824 (2007)
Bhadra S, Khastgir D, Polym. Test, 27, 851 (2008)
Zhang LJ, Wan MX, Adv. Funct. Mater., 13(10), 815 (2003)
Angelopoulos M, Ray A, MacDiarmid AG, Synth. Met., 21, 21 (1987)
Armbruster DA, Pry T, Clin. Biochem. Rev., 29 Supp, S49 (2008)
MacDiarmid AG, Synth. Met., 125, 11 (2001)
Nicolas-Debarnot D, Poncin-Epaillard F, Anal. Chim. Acta, 475, 1 (2003)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로