ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 28, 2015
Accepted June 29, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Improving the tensile strength of carbon nanotube yarn via one-step double [2+1] cycloadditions

Research Institute of Advanced Energy Technology, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 702-701, Korea 1Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyungbuk 790-784, Korea 2Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyungbuk 790-784, Korea
ce20047@postech.ac.kr
Korean Journal of Chemical Engineering, January 2016, 33(1), 299-304(6), 10.1007/s11814-015-0140-9
downloadDownload PDF

Abstract

The tensile strength of a CNT yarn was improved through simple one-step double [2+1] cycloaddition reactions that crosslinked the constituent CNTs using a polyethylene glycol (PEG)-diazide crosslinker. The FT-IR spectrum confirmed that the azide groups in the PEG-diazide were converted into aziridine rings, indicating that the cycloaddition reaction was successful. The generation of crosslinked CNTs was also supported by the observation of N1s peak in the XPS spectrum and the increased thermal stability of the material, as observed by TGA. The tensile strength of the CNT yarn was increased from 0.2GPa to 1.4GPa after the crosslinking reaction when twisted at 4000 twists/meter. The appropriate selection of the crosslinker may further optimize the CNT yarn crosslinking reaction. The simplicity of this one-step crosslinking reaction provides an economical approach to the mass production of high-strength CNT yarns.

References

Lan Y, Wang Y, Ren ZF, Adv. Phys., 60, 553 (2011)
Yu M, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS, Science, 287, 637 (2000)
Park J, Lee KH, Korean J. Chem. Eng., 29(3), 277 (2012)
Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P, Science, 290, 1331 (2000)
Jiang KL, Li QQ, Fan SS, Nature, 419, 801 (2002)
Li YL, Kinloch IA, Windle AH, Science, 304, 276 (2004)
Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A, Science, 318, 1892 (2007)
Lu WB, Zu M, Byun JH, Kim BS, Chou TW, Adv. Mater., 24(14), 1805 (2012)
Liu K, Sun Y, Zhou R, Zhu H, Wang J, Liu L, Fan S, Jiang K, Nanotechnology, 21, 045708 (2010)
Tran CD, Humphries W, Smith SM, Huynh C, Lucas S, Carbon, 47, 2662 (2009)
Liu K, Sun Y, Lin X, Zhou R, Wang J, Fan S, Jiang K, Acs Nano, 4, 5827 (2010)
Ryu S, Lee Y, Hwang JW, Hong S, Kim C, Park TG, Lee H, Hong SH, Adv. Mater., 23(17), 1971 (2011)
Zhang M, Atkinson KR, Baughman RH, Science, 306, 1358 (2004)
Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH, Nature, 423, 703 (2003)
Ma W, Liu L, Zhang Z, Yang R, Liu G, Zhang T, An X, Yi X, Ren Y, Niu Z, Li J, Dong H, Zhou W, Ajayan PM, Xie S, Nano Lett., 9, 2855 (2009)
Zhang M, Atkinson KR, Baughman RH, Science, 306, 1358 (2004)
Min J, Cai JY, Sridhar M, Easton CD, Gengenbach TR, McDonnell J, Humphries W, Lucas S, Carbon, 52, 520 (2013)
Lee J, Oh E, Kim HJ, Cho S, Kim T, Lee S, Park J, Kim H, Lee KH, J. Mater. Sci., 48(20), 6897 (2013)
Holzinger M, Steinmetz J, Samaille D, Glerup M, Paillet M, Bernier P, Ley L, Graupner R, Carbon, 42, 941 (2004)
Banerjee S, Hemraj-Benny T, Wong SS, Adv. Mater., 17(1), 17 (2005)
Socrates G, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Wiley, Chichester, New York (2004).
Leinonen H, Rintala J, Siitonen A, Lajunen M, Pettersson M, Carbon, 48, 2425 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로