ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 4, 2015
Accepted June 29, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A simple synthesis of Ag2+xSe nanoparticles and their thin films for electronic device applications

School of Chemical Engineering, University of Ulsan, Ulsan 680-749, Korea 1Department of Physics, University of Ulsan, Ulsan 680-749, Korea
swkim@ulsan.ac.kr
Korean Journal of Chemical Engineering, January 2016, 33(1), 305-311(7), 10.1007/s11814-015-0141-8
downloadDownload PDF

Abstract

A simple method to synthesize silver selenide nanoparticles has been proposed. By changing the ratio of Se-oleylamine complex and silver acetate in the reacting mixture at different temperatures, both size and stoichiometry of the silver selenide particles could be successfully controlled. The size of the nanoparticles was adjusted by changing reaction temperatures. The synthesized silver selenide nanoparticles showed size changes from 3 to 10 nm when the corresponding reaction temperatures were 40-100 oC, respectively. In addition to the size change, the stoichiometry of the synthesized nanoparticles (Ag2+xSe) could be adjusted by simply varying the ratio of Ag to Se precursors. Through XPS analyses the x value in Ag2+xSe was determined, and it changed between 0.54 and .0.03 by varying Ag/Se ratio from 2/0.75 to 2/4. The optical property of the nonstoichiometric Ag2+xSe nanoparticles was different from that of stoichiometric Ag2Se nanoparticles, but showed the plasmon absorption of Ag-Ag network. The plasmon absorption was decreased with the increased concentration of the Se precursor. Finally, the Ag2+xSe thin film in this work showed large magnetoresistance and successfully applied to prepare high-performance Schottky diode. The Ag2.06Se film exhibited the magnetoresistance effect up to 0.9% at only 0.8 T at room temperature. The voltage drop and breakdown voltage of the Schottky diode were 0.5 V and 9.3 V, respectively.

References

Ge JP, Xu S, Liu LP, Li YD, Chem.-Eur. J., 12, 3672 (2006)
Ng CHB, Tan H, Fan WY, Langmuir, 22(23), 9712 (2006)
Batabyal SK, Basu C, Das AR, Sanyal GS, Cryst. Growth Des., 4, 509 (2004)
Ng MT, Boothroyd C, Vittal JJ, Chem. Commun., 30, 3820 (2005)
Li D, Zheng Z, Shui Z, Long M, Yu J, Wong KW, Yang L, Zhang L, Lau WM, J. Phys. Chem. C, 112, 2845 (2008)
Anthony SP, Mater. Lett., 63, 773 (2009)
Zhang SY, Fang CX, Wei W, Jin BK, Tian YP, Shen YH, Yang JX, Gao HW, J. Phys. Chem. C, 111, 4168 (2007)
Gates B, Mayers B, Wu YY, Sun YG, Cattle B, Yang PD, Xia YN, Adv. Funct. Mater., 12(10), 679 (2002)
Wang HL, Qi LM, Adv. Funct. Mater., 18(8), 1249 (2008)
Su HL, Xie Y, Li B, Qian YT, Mater. Res. Bull., 35(3), 465 (2000)
Glanville YJ, Narehood DG, Sokol PE, Amma A, Mallouk T, J. Mater. Chem., 12, 2433 (2002)
Yan YI, Qian XF, Xu HJ, Yin J, Zhu ZK, Inorg. Chem. Commun., 6, 34 (2003)
Wang WZ, Geng Y, Qian YT, Ji MR, Xie Y, Mater. Res. Bull., 34(6), 877 (1999)
Schoen DT, Xie C, Cui Y, J. Am. Chem. Soc., 129(14), 4116 (2007)
Buschmann V, Van Tendeloo G, Monnoyer P, Nagy JB, Langmuir, 14(7), 1528 (1998)
Sahu A, Khare A, Deng DD, Norris DJ, Chem. Commun., 48, 5458 (2012)
Panneerselvam A, Nguyen CQ, Malik MA, O’Brien P, Raftery J, J. Mater. Chem., 19, 419 (2009)
Jafari M, Salavati-Niasari M, Sobhani A, Micro Nano Lett., 8, 508 (2013)
Wang DS, Xie T, Peng Q, Li YD, J. Am. Chem. Soc., 130(12), 4016 (2008)
Son DH, Hughes SM, Yin Y, Alivisatos AP, Science, 306, 1009 (2004)
Gu YP, Cui R, Zhang ZL, Xie ZX, Pang DW, J. Am. Chem. Soc., 134(1), 79 (2012)
Dong B, Li C, Chen G, Zhang Y, Zhang Y, Deng M, Wang Q, Chem. Mater., 25, 503 (2013)
El-Sayed MA, Acc. Chem. Res., 37, 326 (2004)
Neeleshwar S, Chen CL, Tsai CB, Chen YY, Chen CC, Shyu SG, Seehra MS, Phys. Rev. B, 71, 201307 (2005)
Jasieniak J, Smith L, van Embden J, Mulvaney P, Califano M, J. Phys. Chem., 113, 19468 (2009)
Wang YW, Kim JS, Kim GH, Kim KS, Appl. Phys. Lett., 88, 143106 (2006)
Luther JM, Jain PK, Ewers T, Alivisatos AP, Nat. Mater., 10(5), 361 (2011)
Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL, J. Phys. Chem., 101, 3706 (1997)
Park S, Son MK, Kim SK, Jeong MS, Prabakar K, Kim HJ, Korean J. Chem. Eng., 30(11), 2088 (2013)
Kim HC, Yoon C, Song YG, Kim YJ, Lee K, Korean J. Chem. Eng., 32(3), 563 (2015)
Buffat P, Borel JP, Phys. Rev., A, 13, 2287 (1976)
Li YN, Wu YL, Ong BS, J. Am. Chem. Soc., 127(10), 3266 (2005)
Janek J, Mogwitz B, Beck G, Kreutzbruck M, Kienle L, Korte C, Prog. Solid State Chem., 32, 179 (2004)
Hiramatsu H, Osterloh FE, Chem. Mater., 16, 2509 (2004)
Sun SH, Zeng H, J. Am. Chem. Soc., 124(28), 8204 (2002)
Kumar S, Kanjilal D, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 248, 109 (2006)
Chen X, Mao SS, Chem. Rev., 107(7), 2891 (2007)
Bagaria HG, Ada ET, Shamsuzzoha M, Nikles DE, Johnson DT, Langmuir, 22(18), 7732 (2006)
Vo DQ, Kim EJ, Kim S, J. Colloid Interface Sci., 337(1), 75 (2009)
Zhang J, Tang Y, Weng L, Ouyang M, Nano Lett., 9, 4061 (2009)
Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ, Langmuir, 23(10), 5296 (2007)
Kaufmann EN, Common concepts in materials characterization, Wiley, New York (2002).
Morris-Cohen AJ, Frederick MT, Lilly GD, McArthur EA, Weiss EA, J. Phys Chem. Lett., 1, 1078 (2010)
Guzelian AA, Katari JE, Kadavanich AV, Banin U, Hamad K, Juban E, Alivisatos AP, Wolters RH, Arnold CC, Heath JR, J. Phys. Chem., 100(17), 7212 (1996)
Yang F, Xiong S, Xia Z, Liu F, Han C, Zhang D, Semicond. Sci. Technol., 27, 125017 (2012)
Jasieniak J, Mulvaney P, J. Am. Chem. Soc., 129(10), 2841 (2007)
Mogwitz B, Korte C, Janek J, Kreutzbruck MV, Kienle L, J. Appl. Phys., 101, 043510 (2007)
Kreutzbruck MV, Lembke G, Mogwitz B, Korte C, Janek J, J. Phys. Rev. B, 79, 035204 (2009)
Monoharan SS, Prasanna SJ, Kiwitz DE, Schneider CM, Phys. Rev. B, 63, 212405 (2001)
Brillson LJ, Contacts to semiconductors: fundamentals and technology, William Andrew Publishing, New York (1993).
Simon R, Bourke RC, Lougher EH, Adv. Energy Convers., 3, 481 (2001)
Tang Y, Ouyang M, Nat. Mater., 6(10), 754 (2007)
Gil TH, Kim HS, Lee JW, Kim YS, Solid-State Electron., 50, 1510 (2001)
Reddy MB, Kumar AA, Janardhanam V, Reddy VR, Reddy PN, Curr. Appl. Phys., 9(5), 972 (2009)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로