Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 26, 2015
Accepted June 29, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films
Department of Chemical Engineering, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16227, Korea
Korean Journal of Chemical Engineering, January 2016, 33(1), 330-336(7), 10.1007/s11814-015-0142-7
Download PDF
Abstract
To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.
References
Yang KK, Wang XL, Wang YZ, J. Ind. Eng. Chem., 13(4), 485 (2007)
Lilichenko N, Maksimov RD, Zicans J, Meri RM, Plume E, Mech. Compos. Mater., 44, 45 (2008)
Amass W, Amass A, Tighe B, Polym. Int., 47, 89 (1998)
Nam JY, Ray SS, Okamoto M, Macromolecules, 36(19), 7126 (2003)
Lin LH, Liu HJ, Yu NK, J. Appl. Polym. Sci., 106(1), 260 (2007)
Singh S, Ray SS, J. Nanosci. Nanotechnol., 7, 2596 (2007)
Chang J, An YU, Sur GS, J. Polym. Sci. B: Polym. Phys., 41, 94 (2002)
Krikorian V, Pochan DJ, Chem. Mater., 15, 4317 (2003)
Bang G, Kim SW, J. Ind. Eng. Chem., 18(3), 1063 (2012)
Iotti M, Fabbri P, Messori M, Pilati F, Fava P, J. Polym. Environ., 17, 10 (2009)
Kim H, Abdala AA, Macosko CW, Macromolecules, 43(16), 6515 (2010)
Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ, Compos. Sci. Technol., 67, 2528 (2007)
Lee Y, Kim D, Seo J, Han H, Khan SB, Polym. Int., 9, 1386 (2013)
Huang HD, Ren PG, Chen J, Zhang WQ, Ji X, Li ZM, J. Membr. Sci., 409, 156 (2012)
Wang J, Xu C, Hu H, Wan L, Chen R, Zheng H, Liu F, Zhang M, Shang X, Wang X, J. Nanopart. Res., 13, 869 (2011)
Tseng IH, Liao YF, Chiang JC, Tsai MH, Mater. Chem. Phys., 136(1), 247 (2012)
Kim H, Miura Y, Mascosko CW, Chem. Mater., 22, 3441 (2010)
Yang J, Bai L, Feng G, Yang XY, Lv MJ, Zhang CA, Hu H, Wang XB, Ind. Eng. Chem. Res., 52(47), 16745 (2013)
Pinto AM, Cabral J, Tanaka DAP, Mendes AM, Magalhaes FD, Polym. Int., 62, 33 (2013)
Wang HS, Qiu ZB, Thermochim. Acta, 527, 40 (2012)
Wang HS, Qiu ZB, Thermochim. Acta, 526(1-2), 229 (2011)
Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS, Macromolecules, 43(11), 5000 (2010)
Hummers WS, Offman RE, J. Am. Chem. Soc., 80, 1339 (1958)
Kim SW, Choi HM, High Perform. Polym., In Press DOI:10.1177/ 0954008314557051.
Zhao X, Zhang QH, Chen DJ, Lu P, Macromolecules, 43(5), 2357 (2010)
Pei S, Cheng HM, Carbon, 50, 3210 (2012)
Zhou D, Cheng QY, Han BH, Carbon, 49, 3920 (2011)
Chow WS, Lok SK, J. Therm. Anal. Calorim., 95, 627 (2009)
Kim SW, Korean J. Chem. Eng., 28(1), 298 (2011)
Chan CK, Chu IM, Polymer, 42(14), 6089 (2001)
Finnigan B, Martin D, Halley P, Truss R, Campbell K, Polymer, 45(7), 2249 (2004)
Shi X, Gan Z, Eur. Polym. J., 43, 4852 (2007)
Wang D, Yu J, Zhang J, He J, Zhang J, Compos. Sci. Technol., 85, 83 (2013)
Bian J, Lin HL, He FX, Wang L, Wei XW, Chang I, Sancaktar E, Eur. Polym. J., 49, 1406 (2013)
Kim SW, Cha SH, J. Appl. Polym. Sci., 131, 40289 (2014)
Lilichenko N, Maksimov RD, Zicans J, Meri RM, Plume E, Mech. Compos. Mater., 44, 45 (2008)
Amass W, Amass A, Tighe B, Polym. Int., 47, 89 (1998)
Nam JY, Ray SS, Okamoto M, Macromolecules, 36(19), 7126 (2003)
Lin LH, Liu HJ, Yu NK, J. Appl. Polym. Sci., 106(1), 260 (2007)
Singh S, Ray SS, J. Nanosci. Nanotechnol., 7, 2596 (2007)
Chang J, An YU, Sur GS, J. Polym. Sci. B: Polym. Phys., 41, 94 (2002)
Krikorian V, Pochan DJ, Chem. Mater., 15, 4317 (2003)
Bang G, Kim SW, J. Ind. Eng. Chem., 18(3), 1063 (2012)
Iotti M, Fabbri P, Messori M, Pilati F, Fava P, J. Polym. Environ., 17, 10 (2009)
Kim H, Abdala AA, Macosko CW, Macromolecules, 43(16), 6515 (2010)
Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ, Compos. Sci. Technol., 67, 2528 (2007)
Lee Y, Kim D, Seo J, Han H, Khan SB, Polym. Int., 9, 1386 (2013)
Huang HD, Ren PG, Chen J, Zhang WQ, Ji X, Li ZM, J. Membr. Sci., 409, 156 (2012)
Wang J, Xu C, Hu H, Wan L, Chen R, Zheng H, Liu F, Zhang M, Shang X, Wang X, J. Nanopart. Res., 13, 869 (2011)
Tseng IH, Liao YF, Chiang JC, Tsai MH, Mater. Chem. Phys., 136(1), 247 (2012)
Kim H, Miura Y, Mascosko CW, Chem. Mater., 22, 3441 (2010)
Yang J, Bai L, Feng G, Yang XY, Lv MJ, Zhang CA, Hu H, Wang XB, Ind. Eng. Chem. Res., 52(47), 16745 (2013)
Pinto AM, Cabral J, Tanaka DAP, Mendes AM, Magalhaes FD, Polym. Int., 62, 33 (2013)
Wang HS, Qiu ZB, Thermochim. Acta, 527, 40 (2012)
Wang HS, Qiu ZB, Thermochim. Acta, 526(1-2), 229 (2011)
Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS, Macromolecules, 43(11), 5000 (2010)
Hummers WS, Offman RE, J. Am. Chem. Soc., 80, 1339 (1958)
Kim SW, Choi HM, High Perform. Polym., In Press DOI:10.1177/ 0954008314557051.
Zhao X, Zhang QH, Chen DJ, Lu P, Macromolecules, 43(5), 2357 (2010)
Pei S, Cheng HM, Carbon, 50, 3210 (2012)
Zhou D, Cheng QY, Han BH, Carbon, 49, 3920 (2011)
Chow WS, Lok SK, J. Therm. Anal. Calorim., 95, 627 (2009)
Kim SW, Korean J. Chem. Eng., 28(1), 298 (2011)
Chan CK, Chu IM, Polymer, 42(14), 6089 (2001)
Finnigan B, Martin D, Halley P, Truss R, Campbell K, Polymer, 45(7), 2249 (2004)
Shi X, Gan Z, Eur. Polym. J., 43, 4852 (2007)
Wang D, Yu J, Zhang J, He J, Zhang J, Compos. Sci. Technol., 85, 83 (2013)
Bian J, Lin HL, He FX, Wang L, Wei XW, Chang I, Sancaktar E, Eur. Polym. J., 49, 1406 (2013)
Kim SW, Cha SH, J. Appl. Polym. Sci., 131, 40289 (2014)