Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 12, 2015
Accepted June 30, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Modeling of low viscosity oil-water annular flow in horizontal and slightly inclined pipes:Experiments and CFD simulations
Department of Earth Science and Engineering, Hohai University, Nanjing 210098, China 1Daqing Oilfield, Daqing Logging & Testing Serv Co., Daqing 163453, China
Korean Journal of Chemical Engineering, October 2016, 33(10), 2820-2829(10), 10.1007/s11814-016-0188-1
Download PDF
Abstract
To characterize the effect of pipe inclination, low viscosity, flow rate and inlet water cut on annular flow pattern, a low viscosity oil-water two-phase annular flow in horizontal and slightly inclined (+1°, +3° and +5°) pipes with diameter of 20 mm has been experimentally investigated. A modified VOF model based on the CFD software package FLUENT was used to predict the in-situ oil fraction and pressure drop. The experimental data indicate that annular flow appears at a medium-high water cut. The slip ratio increases with flow rate increase but decreases with increasing water cut. The changes are more significant as the degree of inclination increases. Pressure drop is strongly dependent on flow rate, as it increases rapidly as inlet flow rate increase. Good agreement between the experimental data and calculated results of slip ratio and pressure drop was obtained.
References
Cox AL, University of Texas at Austin (1985).
Brauner N, Maron DM, Int. J. Multiph. Flow, 18, 123 (1992)
Trallero JL, in Discipline of Petroleum Engineering, University of Tulsa, 176 (1995).
Beratta A, et el., Int. Commun. Heat Mass Transf., 24, 223 (1997)
Angeli P, Hewitt GF, Int. J. Multiph. Flow, 26, 1117 (2000)
Elseth G, Norwegian University of Science and Technology, 270 (2001).
Chakrabarti DR, Das G, Ray S, Chem. Eng. Technol., 28(9), 1003 (2005)
Al-Wahaibi T, et al., J. Petroleum Sci. Eng., 122, 266 (2014)
Rodriguez OMH, Oliemans RVA, Int. J. Multiph. Flow, 32(3), 323 (2006)
Lum JYL, Al-Wahaibi T, Angeli P, Int. J. Multiph. Flow, 32(4), 413 (2006)
Kumara WAS, Halvorsen BM, Melaaen MC, Chem. Eng. Sci., 65(15), 4332 (2010)
Ooms G, Appl. Sci. Res., 26, 147 (1972)
Oliemans RVA, Ooms G, Core-Annular Flow of Oil and Water through a Pipeline, in Multiphase Science and Technology, Hewitt GF, Delhaye JM, Zuber N, Ed., Springer Berlin Heidelberg, 427 (1986).
Arney MS, Bai R, Guevara E, Joseph DD, Liu K, Int. J. Multiph. Flow, 19(6), 1061 (1993)
Bai R, Kelkar K, Joseph DD, J. Fluid Mech., 327, 1 (1996)
Joseph DD, et al., Annual Review of Fluid Mechanics, 29, 65 (1997)
Barnea D, Int. J. Multiph. Flow, 12, 733 (1986)
Barnea D, Taitel Y, Chem. Eng. Sci., 44, 325 (1989)
Brauner N, Int. J. Multiph. Flow, 17, 59 (1991)
Bannwart AC, J. Petroleum Sci. Eng., 32, 127 (2001)
Rodriguez OMH, Bannwart AC, AIChE J., 54(1), 20 (2008)
Rodriguez OMH, Bannwart AC, de Carvalho CHM, J. Petroleum Sci. Eng., 65, 67 (2009)
Strazza D, Grassi B, Demori M, Ferrari V, Poesio P, Chem. Eng. Sci., 66(12), 2853 (2011)
Ko T, Choi HG, Bai R, Joseph DD, Int. J. Multiph. Flow, 28(7), 1205 (2002)
Ghosh S, Das G, Das PK, Chem. Eng. Process., 49(11), 1222 (2010)
Kaushik VVR, et al., J. Petroleum Sci. Eng., 86-87, 153 (2012)
McCaslin JO, Desjardins O, Int. J. Multiph. Flow, 67, 88 (2014)
Tripathi S, et al., Procedia IUTAM, 15, 278 (2015).
Ghosh S, Das G, Das PK, Chem. Eng. Res. Des., 89(11A), 2244 (2011)
Jiang F, Wang YJ, Ou JJ, Xiao ZM, Ind. Eng. Chem. Res., 53(19), 8235 (2014)
Ghorai S, Nigam KDP, Chem. Eng. Process., 45(1), 55 (2006)
De Schepper SCK, Heynderickx GJ, Marin GB, Chem. Eng. J., 138(1-3), 349 (2008)
Brackbill J, Kothe DB, Zemach C, J. Comput. Phys., 100, 335 (1992)
Rampure MR, Buwa VV, Ranade VV, Can. J. Chem. Eng., 81(3-4), 692 (2003)
Masood RMA, Delgado A, Chem. Eng. Sci., 108, 154 (2014)
Grassi B, Strazza D, Poesio P, Int. J. Multiph. Flow, 34(10), 950 (2008)
Poesio P, Strazza D, Sotgia G, Appl. Therm. Eng., 49, 41 (2012)
Ng TS, Lawrence CJ, Hewitt GF, Int. J. Multiph. Flow, 27(7), 1301 (2001)
Ng TS, Lawrence CJ, Hewittt GF, Chem. Eng. Res. Des., 82(3), 309 (2004)
Al-Wahaibi T, Angeli P, Int. J. Multiph. Flow, 37(8), 930 (2011)
Lum JY, Lovick J, Angeli P, Can. J. Chem. Eng., 82(2), 303 (2004)
Jiang F, Wang YJ, Ou JJ, Chen CG, Chem. Eng. Technol., 37(4), 659 (2014)
Brauner N, Maron DM, Int. J. Multiph. Flow, 18, 123 (1992)
Trallero JL, in Discipline of Petroleum Engineering, University of Tulsa, 176 (1995).
Beratta A, et el., Int. Commun. Heat Mass Transf., 24, 223 (1997)
Angeli P, Hewitt GF, Int. J. Multiph. Flow, 26, 1117 (2000)
Elseth G, Norwegian University of Science and Technology, 270 (2001).
Chakrabarti DR, Das G, Ray S, Chem. Eng. Technol., 28(9), 1003 (2005)
Al-Wahaibi T, et al., J. Petroleum Sci. Eng., 122, 266 (2014)
Rodriguez OMH, Oliemans RVA, Int. J. Multiph. Flow, 32(3), 323 (2006)
Lum JYL, Al-Wahaibi T, Angeli P, Int. J. Multiph. Flow, 32(4), 413 (2006)
Kumara WAS, Halvorsen BM, Melaaen MC, Chem. Eng. Sci., 65(15), 4332 (2010)
Ooms G, Appl. Sci. Res., 26, 147 (1972)
Oliemans RVA, Ooms G, Core-Annular Flow of Oil and Water through a Pipeline, in Multiphase Science and Technology, Hewitt GF, Delhaye JM, Zuber N, Ed., Springer Berlin Heidelberg, 427 (1986).
Arney MS, Bai R, Guevara E, Joseph DD, Liu K, Int. J. Multiph. Flow, 19(6), 1061 (1993)
Bai R, Kelkar K, Joseph DD, J. Fluid Mech., 327, 1 (1996)
Joseph DD, et al., Annual Review of Fluid Mechanics, 29, 65 (1997)
Barnea D, Int. J. Multiph. Flow, 12, 733 (1986)
Barnea D, Taitel Y, Chem. Eng. Sci., 44, 325 (1989)
Brauner N, Int. J. Multiph. Flow, 17, 59 (1991)
Bannwart AC, J. Petroleum Sci. Eng., 32, 127 (2001)
Rodriguez OMH, Bannwart AC, AIChE J., 54(1), 20 (2008)
Rodriguez OMH, Bannwart AC, de Carvalho CHM, J. Petroleum Sci. Eng., 65, 67 (2009)
Strazza D, Grassi B, Demori M, Ferrari V, Poesio P, Chem. Eng. Sci., 66(12), 2853 (2011)
Ko T, Choi HG, Bai R, Joseph DD, Int. J. Multiph. Flow, 28(7), 1205 (2002)
Ghosh S, Das G, Das PK, Chem. Eng. Process., 49(11), 1222 (2010)
Kaushik VVR, et al., J. Petroleum Sci. Eng., 86-87, 153 (2012)
McCaslin JO, Desjardins O, Int. J. Multiph. Flow, 67, 88 (2014)
Tripathi S, et al., Procedia IUTAM, 15, 278 (2015).
Ghosh S, Das G, Das PK, Chem. Eng. Res. Des., 89(11A), 2244 (2011)
Jiang F, Wang YJ, Ou JJ, Xiao ZM, Ind. Eng. Chem. Res., 53(19), 8235 (2014)
Ghorai S, Nigam KDP, Chem. Eng. Process., 45(1), 55 (2006)
De Schepper SCK, Heynderickx GJ, Marin GB, Chem. Eng. J., 138(1-3), 349 (2008)
Brackbill J, Kothe DB, Zemach C, J. Comput. Phys., 100, 335 (1992)
Rampure MR, Buwa VV, Ranade VV, Can. J. Chem. Eng., 81(3-4), 692 (2003)
Masood RMA, Delgado A, Chem. Eng. Sci., 108, 154 (2014)
Grassi B, Strazza D, Poesio P, Int. J. Multiph. Flow, 34(10), 950 (2008)
Poesio P, Strazza D, Sotgia G, Appl. Therm. Eng., 49, 41 (2012)
Ng TS, Lawrence CJ, Hewitt GF, Int. J. Multiph. Flow, 27(7), 1301 (2001)
Ng TS, Lawrence CJ, Hewittt GF, Chem. Eng. Res. Des., 82(3), 309 (2004)
Al-Wahaibi T, Angeli P, Int. J. Multiph. Flow, 37(8), 930 (2011)
Lum JY, Lovick J, Angeli P, Can. J. Chem. Eng., 82(2), 303 (2004)
Jiang F, Wang YJ, Ou JJ, Chen CG, Chem. Eng. Technol., 37(4), 659 (2014)