ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 3, 2016
Accepted May 14, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Production of fermentable sugars from corn fiber using soaking in aqueous ammonia (SAA) pretreatment and fermentation to succinic acid using Escherichia coli AFP184

Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, U.S.A., USA 1Sustainable Biofuels and Co-products Research Unit, Eastern Regional Research Center, Agricultural Research Service, USDA, Wyndmoor, PA 19038, U.S.A., USA 2Department of Environmental Engineering, Kongju National University, Cheonan, Chungnam 31080, Korea
thkim@kongju.ac.kr
Korean Journal of Chemical Engineering, October 2016, 33(10), 2863-2868(6), 10.1007/s11814-016-0139-x
downloadDownload PDF

Abstract

Conversion of corn fiber (CF), a by-product from the corn-to-ethanol conversion process, into fermentable sugar and succinic acid was investigated using soaking in aqueous ammonia (SAA) pretreatment followed by biological conversions, including enzymatic hydrolysis and fermentation using genetically engineered E. coli (AFP184). The SAA pretreatment (using a 15% w/w NH4OH solution at a solid-to-liquid ratio of 1 : 10 at 60 ℃ for 24 h) removed 20-38% of lignin and significantly improved the digestibility of the treated solid (85-99% of glucan digestibility). Following the enzymatic hydrolysis, the sugar-rich hydrolysate was subjected to dilute sulfuric acid treatment (1 wt% sulfuric acid and 120 ℃ for 1 h), which hydrolyzed the oligosaccharides in the hydrolysate into fermentable monomeric sugars. The mixed sugar hydrolysates containing hexose and pentose obtained from the two-step hydrolysis and SAA pretreatment were fermented to succinic acid using a genetically engineered microorganism, Escherichia coli AFP184, for evaluating the fermentability. Engineered E. coli AFP184 effectively converted soluble sugars in the hydrolysate to succinic acid (20.7 g/L), and the production rate and yield were further enhanced with additional nutrients; the highest concentration of succinic acid was 26.3 g/L for 48 h of fermentation.

References

Demirbas A, Energy Conv. Manag., 50(9), 2239 (2009)
Ethanol Industry Outlook, Renewable Fuels Association (RFA, website; http://www.ethanolrfa.org/), January, Washington, DC, USA (2015).
Pocket guide to ethanol 2015, Renewable Fuels Association. Available from: http://www.ethanolrfa.org/pages/rfa-pocket-guide-toethanol, Accessed August 7, 2015 (2015).
Mosier NS, Hendrickson R, Brewer M, Ho N, Sedlak M, Dreshel R, Welch G, Dien BS, Aden A, Ladisch MR, Appl. Biochem. Biotechnol., 125(2), 77 (2005)
Oh IJ, Lee HW, Park CH, Lee SY, Lee J, J. Microbiol. Biotechnol., 18(5), 908 (2008)
Sanchez AM, Bennett GN, San KY, Biotechnol. Prog., 21(2), 358 (2005)
Zeikus JG, Jain MK, Elankovan P, Appl. Microbiol. Biotechnol., 51(5), 545 (1999)
Cornils B, Lappe P, “Dicarboxylic acids, aliphatic” in Ullmann’s encyclopedia of industrial chemistry, Wiley-VCH, Weinheim, DOI:10.1002/14356007.a08_523 (2006).
Bai B, Zhou JM, Yang MH, Liu YL, Xu XH, Xing JM, Bioresour. Technol., 185, 56 (2015)
Kim TH, Taylor F, Hicks KB, Bioresour. Technol., 99(13), 5694 (2008)
Yoo CG, Nghiem NP, Hicks KB, Kim TH, Appl. Biochem. Biotechnol., 169(8), 2430 (2013)
Andersson C, Hodge D, Berglund KA, Rova U, Biotechnol. Prog., 23(2), 381 (2007)
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D, Determination of structural carbohydrates and lignin in biomass, Vol NREL/TP-510-42618 (2012).
Rollin JA, Zhu ZG, Sathitsuksanoh N, Zhang YHP, Biotechnol. Bioeng., 108(1), 22 (2011)
Nghiem NP, Kim TH, Yoo CG, Hicks KB, Appl. Biochem. Biotechnol., 171(2), 341 (2013)
Kim TH, Korean J. Chem. Eng., 28(11), 2156 (2011)
Donnelly MI, Sanville-Millard CY, Nghiem NP, US Patent, 6,743,610 (2004).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로