Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 26, 2015
Accepted June 20, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Potential industrial application of Actinobacillus succinogenes NJ113 for pyruvic acid production by microaerobic fermentation
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
kqchen@njtech.edu.cn
Korean Journal of Chemical Engineering, October 2016, 33(10), 2908-2914(7), 10.1007/s11814-016-0168-5
Download PDF
Abstract
Actinobacillus succinogenes NJ113 is capable of microaerobic fermentation, which offers the possibility of a novel type of pyruvic acid production. A dissolved oxygen environment with stirring at 300 rpm was a key factor in the fermentative production of a maximum concentration of pyruvic acid. Potassium carbonate (K2CO3) was found to have a role in promoting pyruvic acid production, influencing the concentration of pyruvic acid and production of the by-product succinic acid. The final titer of pyruvic acid production was 36.8±0.1 g L-1 with an overall yield of_x000D_
0.639±0.056 g g-1 glucose and 3.12±0.03mmol g-1 dry cell weight h-1. Significance and impact of the study: This study is the first to illustrate the advantage of using Actinobacillus succinogenes NJ113 with no genetic modification under microaerobic conditions for the production of pyruvic acid.
Keywords
References
Paul GC, Thomas CR, Adv. Biochem. Eng./Biotechnol., 60, 1 (1998)
McKinlay JB, Vieille C, Zeikus JG, Appl. Microbiol. Biotechnol., 76(4), 727 (2007)
Li Y, Chen J, Lun SY, Appl. Microbiol. Biotechnol., 57(4), 451 (2001)
Wang Q, He P, Lu D, Shen A, Jiang N, Lett. Appl. Microbiol., 35, 338 (2002)
Xu P, Qiu JH, Gao C, Ma CQ, J. Biosci. Bioeng., 105(3), 169 (2008)
Wendisch VF, Bott M, Eikmanns BJ, Curr. Opin. Microbiol., 9, 268 (2006)
Wieschalka S, Blombach B, Eikmanns BJ, Appl. Microbiol. Biotechnol., 94(2), 449 (2012)
McKinlay JB, Laivenieks M, Schindler BD, McKinlay AA, Siddaramappa S, Challacombe JF, Lowry SR, Clum A, Lapidus AL, Burkhart KB, Harkins V, Vieille C, Bmc Genomics, 11, 16 (2010)
Guettler MV, Rumler D, Jain MK, Int. J. Systematic Bacteriology, 49, 207 (1999)
Li QA, Wang D, Song ZY, Zhou W, Wu Y, Xing JM, Su ZG, Bioresour. Technol., 101(19), 7665 (2010)
Xi YI, Chen KQ, Xu R, Zhang JH, Bai XF, Jiang M, Wei P, Chen JY, Biochem. Eng. J., 69, 87 (2012)
Leonardo MR, Dailly Y, Clark DP, J. Bacteriol., 178, 6013 (1996)
Martinez I, Bennett GN, San KY, Metabolic Engineering, 12, 499 (2010)
Seo C, Lee HW, Suresh A, Yang JW, Jung JK, Kim YC, Korean J. Chem. Eng., 31(8), 1433 (2014)
Sawers G, Curr. Opin. Microbiol., 2, 181 (1999)
McKinlay JB, Shachar-Hill Y, Zeikus JG, Vieille C, Metabolic Engineering, 9, 177 (2007)
Wang J, Zhu JF, Bennett GN, San KY, Metabolic Engineering, 13, 328 (2011)
Alexeeva S, de Kort B, Sawers G, Hellingwerf KJ, de Mattos MJT, J. Bacteriol., 182, 4934 (2000)
van Maris AJA, Geertman JMA, Vermeulen A, Groothuizen MK, Winkler AA, Piper MDW, van Dijken JP, Pronk JT, Appl. Environ. Microbiol., 70, 159 (2004)
Zelic B, Gostovic S, Vuorilehto K, Vasic-Racki B, Takors R, Biotechnol. Bioeng., 85(6), 638 (2004)
Izumi Y, Matsumura Y, Tani Y, Yamada H, Agric. Biol. Chem., 46, 2673 (1982)
Yanase H, Mori N, Masuda M, Kita K, Shimao M, Kato N, J. Ferment. Bioeng., 73, 287 (1992)
McKinlay JB, Vieille C, Zeikus JG, Appl. Microbiol. Biotechnol., 76(4), 727 (2007)
Li Y, Chen J, Lun SY, Appl. Microbiol. Biotechnol., 57(4), 451 (2001)
Wang Q, He P, Lu D, Shen A, Jiang N, Lett. Appl. Microbiol., 35, 338 (2002)
Xu P, Qiu JH, Gao C, Ma CQ, J. Biosci. Bioeng., 105(3), 169 (2008)
Wendisch VF, Bott M, Eikmanns BJ, Curr. Opin. Microbiol., 9, 268 (2006)
Wieschalka S, Blombach B, Eikmanns BJ, Appl. Microbiol. Biotechnol., 94(2), 449 (2012)
McKinlay JB, Laivenieks M, Schindler BD, McKinlay AA, Siddaramappa S, Challacombe JF, Lowry SR, Clum A, Lapidus AL, Burkhart KB, Harkins V, Vieille C, Bmc Genomics, 11, 16 (2010)
Guettler MV, Rumler D, Jain MK, Int. J. Systematic Bacteriology, 49, 207 (1999)
Li QA, Wang D, Song ZY, Zhou W, Wu Y, Xing JM, Su ZG, Bioresour. Technol., 101(19), 7665 (2010)
Xi YI, Chen KQ, Xu R, Zhang JH, Bai XF, Jiang M, Wei P, Chen JY, Biochem. Eng. J., 69, 87 (2012)
Leonardo MR, Dailly Y, Clark DP, J. Bacteriol., 178, 6013 (1996)
Martinez I, Bennett GN, San KY, Metabolic Engineering, 12, 499 (2010)
Seo C, Lee HW, Suresh A, Yang JW, Jung JK, Kim YC, Korean J. Chem. Eng., 31(8), 1433 (2014)
Sawers G, Curr. Opin. Microbiol., 2, 181 (1999)
McKinlay JB, Shachar-Hill Y, Zeikus JG, Vieille C, Metabolic Engineering, 9, 177 (2007)
Wang J, Zhu JF, Bennett GN, San KY, Metabolic Engineering, 13, 328 (2011)
Alexeeva S, de Kort B, Sawers G, Hellingwerf KJ, de Mattos MJT, J. Bacteriol., 182, 4934 (2000)
van Maris AJA, Geertman JMA, Vermeulen A, Groothuizen MK, Winkler AA, Piper MDW, van Dijken JP, Pronk JT, Appl. Environ. Microbiol., 70, 159 (2004)
Zelic B, Gostovic S, Vuorilehto K, Vasic-Racki B, Takors R, Biotechnol. Bioeng., 85(6), 638 (2004)
Izumi Y, Matsumura Y, Tani Y, Yamada H, Agric. Biol. Chem., 46, 2673 (1982)
Yanase H, Mori N, Masuda M, Kita K, Shimao M, Kato N, J. Ferment. Bioeng., 73, 287 (1992)