ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 26, 2016
Accepted May 5, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synergistic effect in low temperature co-pyrolysis of sugarcane bagasse and lignite

Hubei Coal Conversion and New Carbon Materials Key Laboratory, Wuhan University of Science and Technology, Wuhan 430081, China
horizon5213@126.com
Korean Journal of Chemical Engineering, October 2016, 33(10), 2923-2929(7), 10.1007/s11814-016-0129-z
downloadDownload PDF

Abstract

Sugarcane bagasse was co-pyrolyzed with lignite in a fixed bed reactor to investigate the possible interaction during co-pyrolysis. GC-MS revealed that the concentration of phenols and aliphatic compounds in the tar increased with the addition of sugarcane bagasse, while the content of aromatic compounds had the contradictory tendency. The phenol content in co-pyrolyzed tar reached 20.35%, which increased by 142.26% compared with the calculated values. The sugarcane bagasse decomposition peak partly overlapped with lignite pyrolysis peak from TG-DTG curves, which meant more interaction between lignite and sugarcane bagasse during the pyrolysis process. The difference between the experimental and calculated values of pyrolysis products yield, tar components, DTG values and kinetics analysis indicated the synergetic effect between lignite and sugarcane bagasse.

References

Edreis EMA, Luo GQ, Yao H, J. Anal. Appl. Pyrolysis, 107, 107 (2014)
Xian P, Lu Y, Wang XY, Zhong LY, Chemistry and Industry of Forest Products, 26, 65 (2006)
Mi T, Chen HP, Gao B, Liu DC, J. Huazhong Univ. Sci. Technol., 33, 71 (2005)
Liao YF, Zeng CC, Ma XQ, Song JH, Journal of South China University Technol., 41, 1 (2013)
Mao YB, Dong L, Dong YP, Liu WP, Chang JF, Yang S, Lv ZC, Fan PF, Bioresour. Technol., 181, 155 (2015)
Wu ZQ, Wang SZ, Zhao J, Chen L, Meng HY, Bioresour. Technol., 169, 220 (2014)
Song YY, Tahmasebi A, Yu JL, Bioresour. Technol., 174, 204 (2014)
Aboyade AO, Gorgens JF, Carrier M, Meyer EL, Knoetze JH, Fuel Process. Technol., 106, 310 (2013)
Krerkkaiwan S, Fushimi C, Tsutsumi A, Kuchonthara P, Fuel Process. Technol., 115, 11 (2013)
Yang X, Yuan CY, Xu J, Zhang WJ, Bioresour. Technol., 173, 1 (2014)
Aboyade AO, Carrier M, Meyer EL, Knoetze H, Gorgens JF, Energy Conv. Manag., 65, 198 (2013)
He XM, Pan Y, Chen K, Wu LS, Coal Conversion, 35, 11 (2012)
Kastanaki E, Vamvuka D, Grammelis P, Kakaras E, Fuel Process. Technol., 77, 159 (2002)
Collot AG, Zhuo Y, Dugwell DR, Kandiyoti R, Fuel, 78(6), 667 (1999)
Moghtaderi B, Meesri C, Wall TF, Fuel, 83(6), 745 (2004)
Aboyade AO, Carrier M, Meyer EL, Knoetze JH, Gorgens JF, Thermochim. Acta, 530, 95 (2012)
Zheng ZF, Huang YB, Jiang JC, Zhou L, Yang XQ, Journal of Southwest Forestry University, 30, 63 (2010)
Cheng XH, He XM, Dai D, Zhang D, Zeng XC, Chem. Ind. Eng. Prog., 34, 4385 (2015)
Weiland NT, Means NC, Morreale BD, Fuel, 94(1), 563 (2012)
Masnadi MS, Habibi R, Kopyscinski J, Hill JM, Bi XT, Lim CJ, Ellis N, Grace JR, Fuel, 117, 1204 (2014)
Cahyono RB, Rozhan AN, Yasuda N, Nomura T, Hosokai S, Kashiwaya Y, Akiyama T, Fuel Process. Technol., 113, 84 (2013)
Xiong J, Zhou ZJ, Xu SQ, Yu GS, CIESC J., 1, 192 (2011)
Xu SQ, Zhou ZJ, Dai ZH, Yu GS, Gong X, Journal of Chemical Engineering of Chinese Universities, 1 (2010)
Howaniec N, Smolinski A, Stanczyk K, Pichlak M, Int. J. Hydrog. Energy, 36(22), 14455 (2011)
Wu HX, Li HB, Zhao ZL, J. of Fuel Chem. Technol., 37, 538 (2009)
Yi S, He XM, Cheng XH, Lin HT, Zheng H, Chem. Eng., 44, 64 (2016)
Ahn S, Choi G, Kim D, Biomass Bioenerg., 71, 144 (2014)
Chen CX, Ma XQ, He Y, Bioresour. Technol., 117, 264 (2012)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로