ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 12, 2016
Accepted May 8, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Experimental investigation of nanofibrous poly(vinylidene fluoride) membranes for desalination through air gap membrane distillation process

Transport Phenomena & Nanotechnology Lab., School of Chemical Engineering, University College of Engineering, University of Tehran, Tehran, Iran 1NFCRS, Nuclear Science and Technology Research Institute, Tehran, Iran 2Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
j_karimi@alum.sharif.edu
Korean Journal of Chemical Engineering, October 2016, 33(10), 2953-2960(8), 10.1007/s11814-016-0137-z
downloadDownload PDF

Abstract

A comparative study was conducted to evaluate the performance of two membrane types of electrospun poly(vinylidene fluoride) (PVDF) and commercial ploytetrafluoroethylene (PTFE). The optimized needleless electrospinning technique was used to prepare PVDF membranes. Scanning electron microscopy (SEM), wettability tests, water flux, mechanical strength and liquid entry pressure (LEP) measurements were performed to evaluate the prepared membrane. Air gap membrane distillation (AGMD) experiments were carried out to investigate the salt rejection performance and the durability of membranes. The results show that our nanofibrous PVDF membrane presents higher water permeation flux (>20 kg/m2 h) compared to commonly used PTFE. In addition, the experimental data confirms that competitive salt rejection efficiency (>99.8%) was obtained in this new membrane.

References

El-Zanati E, El-Khatib KM, Desalination, 205(1-3), 15 (2007)
Xu Y, Zhu BK, Xu YY, Desalination, 189(1-3), 165 (2006)
Gryta M, Tomaszewska M, Grzechulska J, Morawski AW, J. Membr. Sci., 181(2), 279 (2001)
Hofman-Bieniek M, Jasiewicz K, Pietrzak R, Korean J. Chem. Eng., 31(2), 304 (2014)
Lawson KW, Lloyd DR, J. Membr. Sci., 124(1), 1 (1997)
El-Bourawi MS, Ding Z, Ma R, Khayet M, J. Membr. Sci., 285(1-2), 4 (2006)
Cath TY, Adams VD, Childress AE, J. Membr. Sci., 228(1), 5 (2004)
Izquierdo-Gil MA, Garcia-Payo MC, Fernandez-Pineda C, J. Membr. Sci., 155(2), 291 (1999)
Koros WJ, Ma YH, Shimidzu T, J. Membr. Sci., 120(2), 149 (1996)
Guijt CM, Meindersma GW, Reith T, de Haan AB, Sep. Purif. Technol., 43(3), 233 (2005)
Schofield RW, Fane AG, Fell CJD, Macoun R, Desalination, 77, 279 (1990)
Schofield RW, Fane AG, Fell CJD, J. Membr. Sci., 53, 159 (1990)
Uragami T, Fujimoto M, Sugihara M, Desalination, 34, 311 (1980)
Khayet M, Feng CY, Khulbe KC, Matsuura T, Polymer, 43, 2879 (2002)
Mulder M, Basic principles of membrane technology, First Ed., Kluwer Academic Publishers, Dordrecht (1996).
Moradi R, Karimi-Sabet J, Shariaty-Niassara M, Amini Y, Chem. Eng. Process., 100, 26 (2016)
Moradi R, Karimi-Sabet J, Shariaty-Niassar M, Koochaki MA, Polymers, 7, 1444 (2015)
Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S, Compos. Sci. Technol., 63, 2223 (2003)
Feng C, Khulbe KC, Matsuura I, Gopal R, Kaur S, Rarnakrishna S, Khayet A, J. Membr. Sci., 311(1-2), 1 (2008)
Wu D, Huang X, Lai X, Sun D, Lin L, J. Nanosci. Nanotechnol., 10, 4221 (2010)
Niu HT, Lin T, Wang XG, J. Appl. Polym. Sci., 114(6), 3524 (2009)
Liu F, Hashim NA, Liu YT, Abed MRM, Li K, J. Membr. Sci., 375(1-2), 1 (2011)
Ma Y, Su Y, Li Y, Jiang Z, Korean J. Chem. Eng., 32(9), 1902 (2015)
Hendren ZD, Brant J, Wiesner MR, J. Membr. Sci., 331(1-2), 1 (2009)
Essalhi M, Khayet M, J. Membr. Sci., 433, 167 (2013)
Mulder M, Basic principles of membrane technology, First Ed., Kluwer Academic Publishers, Dordrecht (1996).
Fan HW, Peng YL, Chem. Eng. Sci., 79, 94 (2012)
Phattaranawik J, Jiraratananon R, Fane AG, J. Membr. Sci., 215(1-2), 75 (2003)
Cheng DY, Wiersma SJ, US Patent, 4,419,242 (1983).
Niu HT, Lin T, Wang XG, J. Appl. Polym. Sci., 114(6), 3524 (2009)
Fujii Y, Kigoshi S, Iwatani H, Aoyama M, Fusaoka Y, J. Membr. Sci., 72, 73 (1992)
Feng C, Khulbe KC, Matsuura I, Gopal R, Kaur S, Rarnakrishna S, Khayet A, J. Membr. Sci., 311(1-2), 1 (2008)
Burger C, Hsiao BS, Chu B, Ann. Rev. Mater. Res., 36, 333 (2006)
Zhao ZZ, Li JQ, Yuan XY, Li X, Zhang YY, Sheng J, J. Appl. Polym. Sci., 97(2), 466 (2005)
Wang R, Liu Y, Li B, Hsiao BS, Chu B, J. Membr. Sci., 392, 167 (2012)
Essalhi M, Khayet M, J. Membr. Sci., 433, 167 (2013)
Fujii Y, Kigoshi S, Iwatani H, Aoyama M, J. Membr. Sci., 72, 53 (1992)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로