ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 15, 2016
Accepted June 8, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Self-cleaning behavior of nanocomposite membrane induced by photocatalytic WO3 nanoparticles for landfill leachate treatment

Membrane Research Group, Nanobiotechnology Institute, Babol University of Technology, Babol, Iran
Korean Journal of Chemical Engineering, October 2016, 33(10), 2968-2981(14), 10.1007/s11814-016-0154-y
downloadDownload PDF

Abstract

Photocatalytic self-cleaning polysulfone (PSf) membranes were fabricated by adding different concentrations of WO3 nanoparticles (0-2 wt%) via phase inversion method for ultrafiltration of landfill leachate. To evaluate the feasibility of self-cleaning property by WO3 nanoparticles, all synthesized membranes were tested with and without UV. After UV irradiation, the value of the contact angle for a membrane with 2wt% WO3 decreased from 67.15° to 37.9°. Results showed that the addition of WO3 affected the pore size, porosity and hydrophilicity of the WO3/PSf membrane, so that the porosity of membrane with 2 wt% WO3 reached 84.86%. The flux of the nanocomposite membrane after irradiation by UV light rose in comparison with the same membrane without UV light, and the flux decline rates also decreased. The flux of the membrane with 2wt% WO3 was also better than the other membranes, which shows the self-cleaning property. The chemical oxygen demand (COD) removal of leachate for modified membranes was also improved by increasing the WO3 nanoparticles. The highest COD removal of the modified membrane with 2 wt% WO3 was 54.91%. This value increased to 77.45% after UV radiation.

References

Yang YN, Zhang HX, Wang P, Zheng QZ, Li J, J. Membr. Sci., 288(1-2), 231 (2007)
Mollahosseini A, Rahimpour A, Jahamshahi M, Peyravi M, Khavarpour M, Desalination, 306, 41 (2012)
Ghaemi N, Madaeni SS, Alizadeh A, Daraei P, Badieh MMS, Falsafi M, Vatanpour V, Sep. Purif. Technol., 96, 214 (2012)
Gao W, Liang H, Ma J, Han M, Chen ZL, Han ZS, Li GB, Desalination, 272(1-3), 1 (2011)
Nunes SP, Peinemann KV, Membrane technology: in the chemical industry, John Wiley & Sons (2006).
Muhamad MS, Salim MR, Lau WJ, Korean J. Chem. Eng., 32(11), 2319 (2015)
Hong SK, Elimelech M, J. Membr. Sci., 132(2), 159 (1997)
Zularisam AW, Ismail AF, Salim R, Desalination, 194(1-3), 211 (2006)
Shon H, Vigneswaran S, Aim RB, Ngo H, Kim IS, Cho J, Environ. Sci. Technol., 39, 3864 (2005)
Won YJ, Lee J, Choi DC, Chae HR, Kim I, Lee CH, Kim IC, Environ. Sci. Technol., 46, 11021 (2012)
Nazri NAM, Lau WJ, Ismail AF, Korean J. Chem. Eng., 32(9), 1853 (2015)
Chen GE, Sun L, Xu ZL, Yang H, Hunag HH, Liu YJ, Korean J. Chem. Eng., 32(12), 2492 (2015)
Wavhal DS, Fisher ER, Desalination, 172(2), 189 (2005)
Reddy AVR, Mohan DJ, Bhattacharya A, Shah VJ, Ghosh PK, J. Membr. Sci., 214(2), 211 (2003)
Shim JK, Na HS, Lee YM, Huh H, Nho YC, J. Membr. Sci., 190(2), 215 (2001)
Wang M, Wu LG, Mo HX, Gao CH, J. Membr. Sci., 274(1-2), 200 (2006)
Graf C, Dembski S, Hofmann A, Ruhl E, Langmuir, 22(13), 5604 (2006)
Rana D, Matsuura T, Chem. Rev., 110(4), 2448 (2010)
Bai H, Sun DD, Water Sci. Technol., 11, 324 (2011)
Yamashita H, Nakao H, Takeuchi M, Nakatani Y, Anpo M, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 206, 898 (2003)
Burgess K, Self Cleaning Titania-Polyurethane Composites. 2007, Faculty of Graduates Studies, The University of Western Ontario, London.
Rahimpour A, Madaeni SS, Taheri AH, Mansourpanah Y, J. Membr. Sci., 313(1-2), 158 (2008)
Ganesh VA, Raut HK, Nair AS, Ramakrishna S, J. Mater. Chem., 21, 16304 (2011)
Bai H, Zhang X, Pan J, Sun DD, Shao J, Water Sci. Technol., 9, 31 (2009)
Rios P, Dodiuk H, Kenig S, Surface Eng., 25, 89 (2009)
Ren G, Gao Y, Yin J, Xing A, Liu H, J. Chem. Soc. Pakistan, 33, 666 (2011)
Wang HL, Lindgren T, He JJ, Hagfeldt A, Lindquist SE, J. Phys. Chem. B, 104(24), 5686 (2000)
Santato C, Odziemkowski M, Ulmann M, Augustynski J, J. Am. Chem. Soc., 123(43), 10639 (2001)
Johansen OJ, Carlson DA, Water Res., 10, 1129 (1976)
Madaeni SS, Ghaemi N, J. Membr. Sci., 303(1-2), 221 (2007)
Li JF, Xu ZL, Yang H, Yu LY, Liu M, Appl. Surf. Sci., 255(9), 4725 (2009)
Wu GP, Gan SY, Cui LZ, Xu YY, Appl. Surf. Sci., 254(21), 7080 (2008)
Palacio L, Ho CC, Zydney AL, Biotechnol. Bioeng., 79(3), 260 (2002)
Mushtaq A, Mukhtar HB, Shariff AM, FTIR Study of Enhanced Polymeric Blend Membrane with Amines (2014).
Gavrilko T, Stepkin V, Shiyanovskaya I, J. Mol. Struct., 218, 411 (1990)
Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B, J. Membr. Sci., 375(1-2), 284 (2011)
Shi M, Printsypar G, Iliev O, Calo VM, Amy GL, Nunes SP, J. Membr. Sci., 487, 19 (2015)
Ghaemi N, Madaeni SS, Alizadeh A, Rajabi H, Daraei P, J. Membr. Sci., 382(1-2), 135 (2011)
Miyauchi M, Phys. Chem. Chem. Phys., 10, 6258 (2008)
Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
Irie H, Hashimoto K, Photocatalytic active surfaces and photoinduced high hydrophilicity/high hydrophobicity, in: Environmental Photochemistry Part II, Springer, 425 (2005).
Wang DL, Li K, Teo WK, J. Membr. Sci., 178(1-2), 13 (2000)
Yu HX, Zhang XF, Zhang YT, Liu JD, Zhang HQ, Desalination, 326, 69 (2013)
Laboy-Nieves EN, Schaffner FC, Abdelhadi A, Goosen MF, Environmental management, sustainable development and human health, CRC Press (2008).
Wu T, Zhou B, Zhu T, Shi J, Xu Z, Hu C, Wang J, RSC Adv., 5, 7880 (2015)
Liu C, Caothien S, Hayes J, Caothuy T, Otoyo T, Ogawa T, Membrane chemical cleaning: from art to science, Pall Corporation, Port Washington, NY, 11050 (2001).
Guan K, Surf. Coat. Technol., 191, 155 (2005)
Cheryan M, Ultrafiltration handbook, Technomic Pub. Co. (1986).
Sopajaree K, Qasim SA, Basak S, Rajeshwar K, J. Appl. Electrochem., 29(9), 1111 (1999)
Mulder J, Basic principles of membrane technology, Springer Science & Business Media (2012).
Zhang XW, Du AJ, Lee PF, Sun DD, Leckie JO, J. Membr. Sci., 313(1-2), 44 (2008)
Yan L, Hong S, Li ML, Li YS, Sep. Purif. Technol., 66(2), 347 (2009)
Jiang T, Kennedy MD, van der Meer WGJ, Vanrolleghem PA, Schippers JC, Desalination, 157(1-3), 335 (2003)
Van den Berg G, Smolders C, Desalination, 77, 101 (1990)
Peyravi M, Rahimpour A, Jahanshahi M, J. Membr. Sci., 473, 72 (2015)
Chakrabarti S, Dutta BK, J. Hazard. Mater., 112(3), 269 (2004)
You S, Wu C, Int. J. Photoenergy, 2013 (2013)
Yang YN, Wang P, Zheng QZ, J. Polym. Sci. B: Polym. Phys., 44(5), 879 (2006)
Rahimpour A, Jahanshahi M, Rajaeian B, Rahimnejad M, Desalination, 278(1-3), 343 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로