ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 2, 2016
Accepted June 14, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Laccase-catalyzed polymerization of m-phenylenediamine in aqueous buffers

Department of Chemical Engineering, College of Engineering, University of Ulsan, Ulsan 44610, Korea
Korean Journal of Chemical Engineering, October 2016, 33(10), 3011-3015(5), 10.1007/s11814-016-0163-x
downloadDownload PDF

Abstract

In the laccase-catalyzed polymerization of m-phenylendiamine in 100% aqueous buffers, the yield of the polymer was strongly influenced by various reaction conditions such as the solution pH and the concentrations of laccase and m-phenylendiamine. When the reaction was performed at pH 3, the 100% synthetic yield of the polymer was achieved. As pH increased, the yield of the polymer decreased significantly to only 4.4% at pH 9. Effects of solution pH on the morphology and the thermal stability of the polymer were investigated in detail. The polymer synthesized at pH 3 has the typical aggregated morphology of globular particles, but being synthesized at pH 7, it has non-aggregated morphology. The thermal stability of the polymer deteriorated as reaction pH increased.

References

Li XG, Huang MR, Duan W, Yang YL, Chem. Rev., 102(9), 2925 (2002)
Li XG, Ma XL, Sun J, Huang MR, Langmuir, 25(3), 1675 (2009)
Park H, Kwon O, Ryu K, Korean J. Chem. Eng., 32(9), 1847 (2015)
Wang J, Yin X, Tang W, Ma H, Korean J. Chem. Eng., 32(9), 1889 (2015)
Zhang YW, Wang L, Tian JQ, Li HL, Luo YL, Sun XP, Langmuir, 27(6), 2170 (2011)
Zhang L, Wang H, Yu W, Su Z, Chai L, Li J, Shi Y, J. Mater. Chem., 22, 18244 (2012)
Yu WT, Zhang LY, Wang HY, Chai LY, J. Hazard. Mater., 260, 789 (2013)
Wang JJ, Jiang J, Hit B, Yu SH, Adv. Funct. Mater., 18(7), 1105 (2008)
Gross RA, Kumar A, Kalra B, Chem. Rev., 101(7), 2097 (2001)
Alvarez S, Manolache S, Danes FJ, AAPG Bull., 88, 369 (2003)
Nabid MR, Entezami AA, J. Appl. Polym. Sci., 94(1), 254 (2004)
Ochoteco E, Mecerreyes D, Adv. Polym. Sci., 237, 1 (2010)
Ichinohe D, Muranaka T, Sasaki T, Kobayashi M, Kise H, J. Polym. Sci. A: Polym. Chem., 36(14), 2593 (1998)
Ichinohe D, Muranaka T, Kise H, J. Appl. Polym. Sci., 70(4), 717 (1998)
Shan J, Cao S, Polym. Adv. Technol., 11, 288 (2000)
Ichinohe D, Saitoh N, Kise H, Macromol. Chem. Phys., 199, 1241 (1998)
Piontek K, Antorini M, Choinowski TJ, Biol. Chem., 277, 37663 (2002)
Madhavi V, Lele SS, BioResour., 4, 1694 (2009)
Karamyshev AV, Shleev SV, Koroleva OV, Yaropolov AI, Sakharov IY, Enzyme Microb. Technol., 33(5), 556 (2003)
Song HK, Palmore GTR, J. Phys. Chem. B, 109(41), 19278 (2005)
Birhanli E, Yesilada O, Biochem. Eng. J., 52, 33 (2010)
Raseda N, Hong S, Kwon OY, Ryu K, J. Microbiol. Biotechnol., 24, 1673 (2014)
Dordick JS, Enzyme Microb. Technol., 11, 194 (1989)
Klibanov AM, Nature, 409, 241 (2001)
Carrea G, Riva S, Angew. Chem.-Int. Edit., 39, 2226 (2000)
Yan XB, Han ZJ, Yang Y, Tay BK, J. Phys. Chem. C, 111, 4125 (2007)
Tran HD, Wang Y, D’Arcy JM, Kaner RB, ACS Nano, 2, 1841 (2008)
Huang JX, Kaner RB, J. Am. Chem. Soc., 126(3), 851 (2004)
Sahoo NG, Jung YC, So HH, Cho JW, Synth. Met., 157, 374 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로