ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 9, 2016
Accepted July 2, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Low temperature synthesis of Manganese tungstate nanoflowers with antibacterial potential: Future material for water purification

1Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh11451, Kingdom of Saudi Arabia 2Department of Biology, Faculty of Science, Albaha University, Albaha 1988, Kingdom of Saudi Arabia 3Department of Organic materials and Fiber Engineering, Chonbuk National University, Jeonju 54896, Korea 4Department of Chemistry, Faculty of Science, Albaha University, Albaha 1988, Kingdom of Saudi Arabia 5Petrochemical Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
touseefamna@gmail.com
Korean Journal of Chemical Engineering, November 2016, 33(11), 3169-3174(6), 10.1007/s11814-016-0196-1
downloadDownload PDF

Abstract

Pure water is the fundamental requisite for human life. The water has been recycled naturally but not in an adequate amount for consumption. Nanotechnology with extraordinary applications provides competent ways for the decontamination of contaminated water. In the present study MnWO4 nanoflowers endorsed with inherent antibacterial activity were successfully synthesized by facile hydrothermal approach. XRD, SEM, EDX spectroscopy and UVDRS were used to characterize the as-synthesized nanoflowers. Gram negative Escherichia coli ATCC 52922 bacterium was used as model organism to test antibacterial activity of as-synthesized MnWO4 nanoflowers. This study was conducted to optimize minimum concentration of MnWO4 nanoflowers and maximum contact time required to achieve complete inactivation of bacteria present in contaminated water. Minimum inhibitory concentration (MIC) of MnWO4 nanoflowers was found to be 10 μg/ml. The assessment and interpretation of bacterial viability was done using dual fluorescent staining. The synthesized 3D-nanoflowers were found as potent bactericides. Thus, MnWO4 nanoflowers emerged to be very good future material for disinfection of biological pollutants present in the contaminated water reservoirs and as an anti-biofouling agent.

References

Khorzughy SH, Eslamkish T, Ardejani FD, Heydartaemeh MR, Korean J. Chem. Eng., 32(1), 88 (2015)
Choi Y, Park B, Cha DK, Korean J. Chem. Eng., 32(9), 1812 (2015)
Singha S, Sarkar U, Korean J. Chem. Eng., 32(1), 20 (2015)
Ayoubi-Feiz B, Aber S, Korean J. Chem. Eng., 32(10), 2014 (2015)
Pruss-Ustun A, Bos R, Gore F, Bartram J, World Health Organization (2008).
Kim W, Ryu BG, Kim S, Heo SW, Kim D, Kim J, Jo H, Kwon JH, Yang JW, Korean J. Chem. Eng., 31(3), 381 (2014)
Pedley S, Pond K, World Health Organization (2003).
Organization WH, World Health Organization (2004).
Boorman GA, Environ. Health Perspect., 107, 207 (1999)
Woo YT, Lai D, McLain JL, Manibusan MK, Dellarco V, Environ. Health Perspect., 110, 75 (2002)
Richardson SD, TrAC Trends Anal. Chem., 22, 666 (2003)
Kamari A, Ngah WSW, Chong MY, Cheah ML, Desalination, 249(3), 1180 (2009)
Kalyani RL, Venkatraju J, Kollu P, Rao NH, Pammi SVN, Korean J. Chem. Eng., 32(5), 911 (2015)
Boulila S, Oudadesse H, Elfeki H, Kallel R, Lefeuvre B, Mabrouk M, Tounsi S, Mhalla D, Mostafa A, Chaabouni K, Makni-Ayedi F, Barroug A, Boudawara T, Elfeki A, Korean J. Chem. Eng., 33(5), 1659 (2016)
Savage N, Diallo MS, J. Nanopart. Res., 7, 331 (2005)
Tiwari DK, Behari J, Sen P, World Appl. Sci. J., 3, 417 (2008)
Felea V, Lemmens P, Yasin S, Zherlitsyn S, Choi K, Lin C, Payen C, J. Phys. Condens. Matter, 23, 216001 (2011)
Ehrenberg H, Weitzel H, Theissmann R, Fuess H, Rodriguez-Martinez L, Welzel S, Physica B, 276, 644 (2000)
Lautenschlager G, Weitzel H, Vogt T, Hock R, Bohm A, Bonnet M, Fuess H, Phys. Rev. B, 48, 6087 (1993)
Hoang LH, Hien N, Choi W, Lee Y, Taniguchi K, Arima T, Yoon S, Chen X, Yang IS, J. Raman Spectrosc., 41, 1005 (2010)
Zhou H, Yiu Y, Aronson M, Wong SS, J. Solid State Chem., 181, 1539 (2008)
He HY, Huang JF, Cao LY, Wu JP, Desalination, 252(1-3), 66 (2010)
Thongtem S, Wannapop S, Phuruangrat A, Thongtem T, Mater. Lett., 63, 833 (2009)
Xing Y, Song S, Feng J, Lei Y, Li M, Zhang H, Solid State Sci., 10, 1299 (2008)
Qu W, Meyer JU, Sens. Actuators B-Chem., 40, 175 (1997)
Montemayor SM, Fuentes AF, Ceram. Int., 30, 393 (2004)
Chen SJ, Chen XT, Xue Z, Zhou JH, Li J, Hong JM, You XZ, J. Mater. Chem., 13, 1132 (2003)
Akhavan O, Ghaderi E, Acs Nano, 4, 5731 (2010)
Amna T, Hassan MS, Pandeya DR, Khil MS, Hwang IH, Appl. Microbiol. Biotechnol., 97(10), 4523 (2013)
Oves M, Arshad M, Khan MS, Ahmed AS, Azam A, Ismail IM, J. Saudi Chem. Soc., 19, 581 (2015)
Almeida MAP, Cavalcante LS, Varela JA, Li MS, Longo E, Adv. Powder Technol., 23(1), 124 (2012)
Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H, Toxicol. Lett., 200, 201 (2011)
Chen S, Guo Y, Chen S, Yu H, Ge Z, Zhang X, Zhang P, Tang J, J. Mater. Chem., 22, 9092 (2012)
Hassan MS, Amna T, Pandeya DR, Hamza A, Bing YY, Kim HC, Khil MS, Appl. Microbiol. Biotechnol., 95, 2013 (2012)
Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ, Langmuir, 18(17), 6679 (2002)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로