Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 25, 2016
Accepted June 24, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
CO2 absorption characteristics of a piperazine derivative with primary, secondary, and tertiary amino groups
1Green Energy Process Laboratory, Climate Change Research Division, Korea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea 2Department of Chemical & Biological Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 02841, Korea 3, Korea
Korean Journal of Chemical Engineering, November 2016, 33(11), 3222-3230(9), 10.1007/s11814-016-0180-9
Download PDF
Abstract
Thermodynamic and kinetic data are important for designing a CO2 absorption process using aqueous amine solutions. A piperazine derivative, 1-(2-aminoethyl)piperazine (AEP), was blended with aqueous amine solutions due to its thermal degradation stability, high CO2 loading (mole of CO2-absorbed per mole of amine) and high solubility in water. In this study, the vapor liquid equilibrium (VLE), absorption rate, and species distribution of aqueous AEP solutions were studied to develop an optimum amine solution in a post-combustion capture process. The VLE and apparent absorption rate of the aqueous 30wt% AEP solution were measured using a batch-type reactor at 313.15, 333.15, and 353.15 K. The AEP exhibited approximately twice higher CO2 loading compared with monoethanolamine (MEA) at all temperatures. The apparent AEP absorption rate (kapp=0.1min-1) was similar to that of diethanolamine (DEA) at 333.15 K. Speciation of the CO2-absorbed AEP was analyzed using 13C NMR. Although AEP featured a primary amino group and secondary amino group, it did not form bicarbamate upon reaction with CO2 based on analysis results. AEP-1-carbamate was primarily formed by reactions between AEP and CO2 during the initial reaction. Bicarbonate species formed as the quantity of absorbed CO2 increased.
Keywords
References
Albo J, Luis P, Irabien A, Ind. Eng. Chem. Res., 49(21), 11045 (2010)
Marland G, Bozden TA, Andres RJ, Global, regional, and national CO2 emissions, Trends: A compendium of data on global change, Statistical Review of World Energy (2010).
Allam R, Bolland O, IPCC special report: Carbon dioxide capture and storage, IPCC Working Group III (2005).
Thiruvenkatachari R, Su S, An H, Yu XX, Prog. Energy Combust. Sci., 35(5), 438 (2009)
Applehy AJ, Foulkes FR, Fuel Cell Handbook, Van Nostrand Reinhold, New York (1989).
Han C, Graves K, Neathery J, Liu K, Energy Environ. Res., 1, 67 (2011)
Kim YE, Choi JH, Nam SC, Yoon YI, Ind. Eng. Chem. Res., 50(15), 9306 (2011)
Davison J, Energy, 32(7), 1163 (2007)
Closmann F, Nguyen T, Rochelle GT, Energy Procedia, 1, 1351 (2009)
Singh D, Croiset E, Douglas PL, Douglas MA, Energy Conv. Manag., 44(19), 3073 (2003)
Davy R, Energy Procedia, 1, 885 (2009)
Li MH, Shen KP, Fluid Phase Equilib., 85, 129 (1993)
Cheng MD, Caparanga AR, Soriano AN, Li MH, J. Chem. Thermodyn., 742, 342 (2010)
Jou FY, Mather AE, Otto FD, Can. J. Chem. Eng., 73(1), 140 (1995)
Veawab A, Tontiwachwuthikul P, Chakma A, Ind. Eng. Chem. Res., 38(10), 3917 (1999)
Veawab A, Toniwachwuthikul P, Bhole SD, Ind. Eng. Chem. Res., 1, 36 (1997)
Singh P, Brilman DWF, Groeneveld MJ, Energy Procedia, 1, 1257 (2009)
Du Y, Li L, Namjoshi O, Voice AK, Fine NA, Rochelle GT, Energy Procedia, 37, 1621 (2013)
Du Y, Rochelle GT, Energy Procedia, 63, 997 (2014)
Zhang R, Bonnin-Nartker EP, Farthing GA, Ji L, Klidas MG, Nelson ME, Rimpf LM, Energy Procedia, 4, 1660 (2011)
Zhang Y, Chen CC, Ind. Eng. Chem. Res., 50(1), 163 (2011)
Jackson P, Fisher KJ, Attalla MI, Am. Soc. Mass. Spectrom., 22, 1420 (2011)
Islam MS, Yusoff R, Ali BS, Engineering e-Transaction., 2, 97 (2010)
Caplow M, J. Am. Chem. Soc., 90, 6795 (1968)
Danckwerts PV, Chem. Eng. Sci., 34, 443 (1979)
Xie HB, Zhou YZ, Zhang YK, Johnson JK, J. Phys. Chem. A, 114(43), 11844 (2010)
Barzagli F, Mani F, Peruzzini M, Energy Environ. Sci., 2, 322 (2009)
Chakraborty AK, Bischoff KB, Astarita G, Damewood JR, J. Am. Chem. Soc., 110, 6947 (1988)
Vaidya PD, Kenig EY, Chem. Eng. Technol., 30(11), 1467 (2007)
Barzagli F, Mani F, Peruzzini M, Int. J. Greenhouse Gas Control, 5, 448 (2011)
Perinu C, Arstad B, Jens KJ, Int. J. Greenhouse Gas Control, 20, 230 (2014)
Choi JH, Oh SG, Kim YE, Yoon YI, Nam SC, Environ. Eng. Sci., 29, 328 (2012)
Um IH, Kim MJ, Min JS, Kwon DS, Bull. Korean Chem. Soc., 15, 523 (1997)
Choi JH, Oh SG, Yoon YI, Jeong SK, Jang KR, Nam SC, J. Ind. Eng. Chem., 18(1), 568 (2012)
Ciftja AF, Hartono AH, Svendsen HF, Int. J. Greenhouse Gas Control, 16, 224 (2013)
Marland G, Bozden TA, Andres RJ, Global, regional, and national CO2 emissions, Trends: A compendium of data on global change, Statistical Review of World Energy (2010).
Allam R, Bolland O, IPCC special report: Carbon dioxide capture and storage, IPCC Working Group III (2005).
Thiruvenkatachari R, Su S, An H, Yu XX, Prog. Energy Combust. Sci., 35(5), 438 (2009)
Applehy AJ, Foulkes FR, Fuel Cell Handbook, Van Nostrand Reinhold, New York (1989).
Han C, Graves K, Neathery J, Liu K, Energy Environ. Res., 1, 67 (2011)
Kim YE, Choi JH, Nam SC, Yoon YI, Ind. Eng. Chem. Res., 50(15), 9306 (2011)
Davison J, Energy, 32(7), 1163 (2007)
Closmann F, Nguyen T, Rochelle GT, Energy Procedia, 1, 1351 (2009)
Singh D, Croiset E, Douglas PL, Douglas MA, Energy Conv. Manag., 44(19), 3073 (2003)
Davy R, Energy Procedia, 1, 885 (2009)
Li MH, Shen KP, Fluid Phase Equilib., 85, 129 (1993)
Cheng MD, Caparanga AR, Soriano AN, Li MH, J. Chem. Thermodyn., 742, 342 (2010)
Jou FY, Mather AE, Otto FD, Can. J. Chem. Eng., 73(1), 140 (1995)
Veawab A, Tontiwachwuthikul P, Chakma A, Ind. Eng. Chem. Res., 38(10), 3917 (1999)
Veawab A, Toniwachwuthikul P, Bhole SD, Ind. Eng. Chem. Res., 1, 36 (1997)
Singh P, Brilman DWF, Groeneveld MJ, Energy Procedia, 1, 1257 (2009)
Du Y, Li L, Namjoshi O, Voice AK, Fine NA, Rochelle GT, Energy Procedia, 37, 1621 (2013)
Du Y, Rochelle GT, Energy Procedia, 63, 997 (2014)
Zhang R, Bonnin-Nartker EP, Farthing GA, Ji L, Klidas MG, Nelson ME, Rimpf LM, Energy Procedia, 4, 1660 (2011)
Zhang Y, Chen CC, Ind. Eng. Chem. Res., 50(1), 163 (2011)
Jackson P, Fisher KJ, Attalla MI, Am. Soc. Mass. Spectrom., 22, 1420 (2011)
Islam MS, Yusoff R, Ali BS, Engineering e-Transaction., 2, 97 (2010)
Caplow M, J. Am. Chem. Soc., 90, 6795 (1968)
Danckwerts PV, Chem. Eng. Sci., 34, 443 (1979)
Xie HB, Zhou YZ, Zhang YK, Johnson JK, J. Phys. Chem. A, 114(43), 11844 (2010)
Barzagli F, Mani F, Peruzzini M, Energy Environ. Sci., 2, 322 (2009)
Chakraborty AK, Bischoff KB, Astarita G, Damewood JR, J. Am. Chem. Soc., 110, 6947 (1988)
Vaidya PD, Kenig EY, Chem. Eng. Technol., 30(11), 1467 (2007)
Barzagli F, Mani F, Peruzzini M, Int. J. Greenhouse Gas Control, 5, 448 (2011)
Perinu C, Arstad B, Jens KJ, Int. J. Greenhouse Gas Control, 20, 230 (2014)
Choi JH, Oh SG, Kim YE, Yoon YI, Nam SC, Environ. Eng. Sci., 29, 328 (2012)
Um IH, Kim MJ, Min JS, Kwon DS, Bull. Korean Chem. Soc., 15, 523 (1997)
Choi JH, Oh SG, Yoon YI, Jeong SK, Jang KR, Nam SC, J. Ind. Eng. Chem., 18(1), 568 (2012)
Ciftja AF, Hartono AH, Svendsen HF, Int. J. Greenhouse Gas Control, 16, 224 (2013)