Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 20, 2016
Accepted June 14, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Optimization of operating conditions in the purification of graphite oxide dispersions
School of Chemical Engineering & Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, P. R. China
zhuguorui@tju.edu.cn
Korean Journal of Chemical Engineering, November 2016, 33(11), 3251-3257(7), 10.1007/s11814-016-0164-9
Download PDF
Abstract
In the graphite oxide (GO) suspension purification process, some metallic impurities in GO cannot be separated. The residual metallic impurities dominate graphite oxide properties and have a negative influence on applications. Therefore, the removal of metallic impurities from graphite oxide has been brought into focus now. Single factor experiments and orthogonal experiments are used to get the optimal purification condition. The results show that purification agent, temperature, stirring intensity and contact time affect the purification degree, and the purification agent is the most important element for the purification efficiency. The optimal purification condition is 10% hydrochloric acid (H10), 20 ℃, 0 rpm and 60 min. Besides, the theoretical stage is calculated by the mass conservation equation and distribution balance equation and the minimum stage is 3 under the optimal purification condition.
References
Brodie BC, J. Franklin. I., 59, 420 (1855)
Mar IT, Valer GJ, Carbon, 24, 163 (1986)
Hummers WS, Hoffman RE, J. Am. Chem. Soc., 80, 1339 (1958)
Hudson MJ, Hunter FR, Peckett JW, J. Mater. Chem., 7, 301 (1997)
Adriano A, Sze YC, Bahareh K, Richard DW, Zdene S, Martin P, Angew. Chem.-Int. Edit., 51, 500 (2012)
Allen MJ, Tung VC, Kaner RB, Chem. Rev., 110(1), 132 (2010)
Kim SW, Choi HM, Korean J. Chem. Eng., 33(1), 330 (2016)
Rogers JA, Nat. Nanotechnol., 3(5), 254 (2008)
Pumera M, Chem. Soc. Rev., 39, 4146 (2010)
Ambrosi A, Pumera M, Chem.-Eur. J., 16, 1786 (2010)
Guo L, Morris DG, Liu XY, Vaslet C, Hurt RH, Kane AB, Chem. Mater., 19, 3472 (2007)
Tian XL, Zhou S, Zhang ZY, He X, Yu MJ, Lin DH, Environ. Sci. Technol., 44, 8144 (2010)
Koyama S, Kim YA, Hayashi T, Takeuchi K, Fujii C, Kuroiwa N, Koyama H, Tsukahara T, Endo M, Carbon, 47, 1365 (2009)
Buchwald SL, Bolm C, Angew. Chem.-Int. Edit., 121, 5694 (2009)
Pumera M, Miyahara Y, Nanoscale, 1, 260 (2009)
Zhao G, Li J, Ren X, Chen C, Wang X, Environ. Sci. Technol., 45, 10454 (2011)
Jia W, Lu S, Korean J. Chem. Eng., 31(7), 1265 (2014)
Atieh MA, Bakather OY, Tawabini BS, Bukhari AA, Khaled M, Alharthi M, Fettouhi M, Abuilaiwi FA, J. Nanomater, 210, 9 (2010)
Machida M, Mochimaru T, Tatsumoto H, Carbon, 44, 2681 (2006)
Liao JH, Zhang Y, Yu W, Xu LN, Ge CW, Liu JH, Gu N, Colloids Surf. A: Physicochem. Eng. Asp., 223, 177 (2003)
Galletto P, Brevet PF, Girault HH, Antoine R, Broyer M, J. Phys. Chem. B, 103(41), 8706 (1999)
Bian Y, Bian ZY, Zhang JX, Ding AZ, Liu SL, Wang H, Appl. Surf. Sci., 329, 269 (2015)
Li Y, Wang CL, Guo ZJ, Liu CL, Wu WS, J. Radioanal. Nucl. Chem., 299, 1683 (2014)
Chen CM, Yang QH, Yang YG, Lv W, Wen YF, Hou PX, Wang MZ, Cheng HM, Adv. Mater., 21(29), 3007 (2009)
Ryu KH, Lee C, Lee GG, Jo S, Sung SW, Korean J. Chem. Eng., 30(10), 1946 (2013)
Mar IT, Valer GJ, Carbon, 24, 163 (1986)
Hummers WS, Hoffman RE, J. Am. Chem. Soc., 80, 1339 (1958)
Hudson MJ, Hunter FR, Peckett JW, J. Mater. Chem., 7, 301 (1997)
Adriano A, Sze YC, Bahareh K, Richard DW, Zdene S, Martin P, Angew. Chem.-Int. Edit., 51, 500 (2012)
Allen MJ, Tung VC, Kaner RB, Chem. Rev., 110(1), 132 (2010)
Kim SW, Choi HM, Korean J. Chem. Eng., 33(1), 330 (2016)
Rogers JA, Nat. Nanotechnol., 3(5), 254 (2008)
Pumera M, Chem. Soc. Rev., 39, 4146 (2010)
Ambrosi A, Pumera M, Chem.-Eur. J., 16, 1786 (2010)
Guo L, Morris DG, Liu XY, Vaslet C, Hurt RH, Kane AB, Chem. Mater., 19, 3472 (2007)
Tian XL, Zhou S, Zhang ZY, He X, Yu MJ, Lin DH, Environ. Sci. Technol., 44, 8144 (2010)
Koyama S, Kim YA, Hayashi T, Takeuchi K, Fujii C, Kuroiwa N, Koyama H, Tsukahara T, Endo M, Carbon, 47, 1365 (2009)
Buchwald SL, Bolm C, Angew. Chem.-Int. Edit., 121, 5694 (2009)
Pumera M, Miyahara Y, Nanoscale, 1, 260 (2009)
Zhao G, Li J, Ren X, Chen C, Wang X, Environ. Sci. Technol., 45, 10454 (2011)
Jia W, Lu S, Korean J. Chem. Eng., 31(7), 1265 (2014)
Atieh MA, Bakather OY, Tawabini BS, Bukhari AA, Khaled M, Alharthi M, Fettouhi M, Abuilaiwi FA, J. Nanomater, 210, 9 (2010)
Machida M, Mochimaru T, Tatsumoto H, Carbon, 44, 2681 (2006)
Liao JH, Zhang Y, Yu W, Xu LN, Ge CW, Liu JH, Gu N, Colloids Surf. A: Physicochem. Eng. Asp., 223, 177 (2003)
Galletto P, Brevet PF, Girault HH, Antoine R, Broyer M, J. Phys. Chem. B, 103(41), 8706 (1999)
Bian Y, Bian ZY, Zhang JX, Ding AZ, Liu SL, Wang H, Appl. Surf. Sci., 329, 269 (2015)
Li Y, Wang CL, Guo ZJ, Liu CL, Wu WS, J. Radioanal. Nucl. Chem., 299, 1683 (2014)
Chen CM, Yang QH, Yang YG, Lv W, Wen YF, Hou PX, Wang MZ, Cheng HM, Adv. Mater., 21(29), 3007 (2009)
Ryu KH, Lee C, Lee GG, Jo S, Sung SW, Korean J. Chem. Eng., 30(10), 1946 (2013)