ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 7, 2016
Accepted August 11, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Rapid transesterification of Jatropha curcas oil to biodiesel using novel catalyst with a microwave heating system

1Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand 2Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand 3, Thailand
achanai130@gmail.com
Korean Journal of Chemical Engineering, December 2016, 33(12), 3388-3400(13), 10.1007/s11814-016-0232-1
downloadDownload PDF

Abstract

We used a microwave heating system to increase Jatropha biodiesel yield, and to reduce both reaction time and energy consumption. The feasibility of converting natural and non-edible feedstocks including arcuate mussel shells and dolomitic rocks, into a novel high-performance, reusable, low-cost and heterogeneous catalyst for the synthesis of biodiesel was also explored. Arcuate mussel shells and dolomitic rocks were first ground and calcined at 900 ℃ for 2 h. After calcination, calcium oxide (CaO) or a mixed oxide of calcium and magnesium (CaO·MgO) was obtained as white powder, which was then chemically activated to improve the physical, chemical and surface properties, and catalytic activities of the catalysts. By heating CaO from waste shells in an excess dehydrated methanol under 65 ℃ at 8 h with nitrogen (N2) flow, calcium methoxide (Ca(OCH3)2) catalyst was prepared. The CaO from natural rocks was, however, turned into calcium glyceroxide complex, by combining with methanol and glycerol of the by-product. It was determined that calcium glyceroxide (Ca[O(OH)2C3H5]2) was formed during the transesterification and acted as the most active phase. Catalyst characterization was by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) surface area and basic strength measurements. The reaction parameters, including reaction time, microwave power, methanol/oil molar ratio, catalyst dosage and catalyst reusability, were studied for fatty acid methyl esters (FAME) yield. The results indicated that Ca(OCH3)2 and Ca[O(OH)2C3H5]2 catalysts derived from waste shells and natural rocks showed good reusability, high energy efficient, environmental-friendly, low cost and facile route for the synthesis of biodiesel.

References

Teo SH, Rashid U, Taufiq-Yap YH, Fuel, 136, 244 (2014)
Degirmenbasi N, Coskun S, Boz N, Kalyon DM, Fuel, 153, 620 (2015)
Niu SL, Huo MJ, Lu CM, Liu MQ, Li H, Bioresour. Technol., 158, 74 (2014)
Reyero I, Arzamendi G, Gandia LM, Chem. Eng. Res. Des., 92(8), 1519 (2014)
Deshmane VG, Adewuyi YG, Fuel, 107, 474 (2013)
Dai YM, Wu JS, Chen CC, Chen KT, Chem. Eng. J., 280, 370 (2015)
Dai YM, Chen KT, Chen CC, Chem. Eng. J., 250, 267 (2014)
Wang JX, Chen KT, Wu JS, Wang PH, Huang ST, Chen CC, Fuel Process. Technol., 104, 167 (2012)
Buasri A, Loryuenyong V, Green Process. Synth., 4, 389 (2015)
Margaretha YY, Prastyo HS, Ayucitra A, Ismadji S, Int. J. Energ. Environ. Eng., DOI:10.1186/2251-6832-3-33., 3, 33 (2012)
Zeng D, Zhang Q, Chen S, Liu S, Chen Y, Tian Y, Wang G, J. Environ. Chem. Eng., 3, 560 (2015)
Buasri A, Chaiyut N, Loryuenyong V, Worawanitchaphong P, Trongyong S, Sci. World J., Article ID 460923, DOI:10.1155/2013/460923., 2013, 7 (2013)
Tang Y, Xu J, Zhang J, Lu Y, J. Clean Prod., 42, 198 (2013)
Nur ZAS, Taufiq-Yap YH, Nizah MFR, Teo SH, Syazwani ON, Islam A, Energy Conv. Manag., 78, 738 (2014)
Buasri A, Rochanakit K, Wongvitvichot W, Masa-ard U, Loryuenyong V, Energy Procedia, 79, 562 (2015)
Correia LM, Campelo ND, Novaes DS, Cavalcante CL, Cecilia JA, Rodriguez-Castellon E, Vieira RS, Chem. Eng. J., 269, 35 (2015)
Liu XJ, Piao XL, Wang YJ, Zhu SL, He HY, Fuel, 87(7), 1076 (2008)
Kouzu M, Hidaka JS, Wakabayashi K, Tsunomori M, Appl. Catal. A: Gen., 39, 11 (2010)
Granados ML, Alba-Rubio AC, Vila F, Alonso DM, Mariscal R, J. Catal., 276(2), 229 (2010)
Leon-Reina L, Cabeza A, Rius J, Maireles-Torres P, Alba-Rubio AC, Granados ML, J. Catal., 300, 30 (2013)
Teo SH, Rashid U, Taufiq-Yap YH, Energy Conv. Manag., 87, 618 (2014)
Wahidin S, Idris A, Shaleh SRM, Energy Conv. Manag., 84, 227 (2014)
Lin YC, Yang PM, Chen SC, Lin JF, Fuel Process. Technol., 115, 57 (2013)
Masood H, Yunus R, Choong TSY, Rashid U, Yap YHT, Appl. Catal. A: Gen., 425-426, 184 (2012)
Esipovich A, Danov S, Belousov A, Rogozhin A, Fuel, 107, 474 (2014)
Alba-Rubio AC, Vila F, Alonso DM, Ojeda M, Mariscal R, Granados ML, Appl. Catal. B: Environ., 95(3-4), 279 (2010)
Buasri A, Rattanapan T, Boonrin C, Wechayan C, Loryuenyong V, J. Chem., Article ID 578625, DOI:10.1155/2015/578625., 2015, 7 (2015)
Farooq M, Ramli A, Subbarao D, J. Clean Prod., 59, 131 (2013)
Granados ML, Poves MDZ, Alonso DM, Mariscal R, Galisteo FC, Moreno-Tost R, Santamaria J, Fierro JLG, Appl. Catal. B: Environ., 73(3-4), 317 (2007)
Nair P, Singh B, Upadhyay SN, Sharma YC, J. Clean Prod., 29-30, 82 (2012)
Cho YB, Seo G, Bioresour. Technol., 101(22), 8515 (2010)
Boey PL, Maniam GP, Hamid SA, Ali DMH, Fuel, 90(7), 2353 (2011)
Suryaputra W, Winata I, Indraswati N, Ismadji S, Renew. Energy, 50, 795 (2013)
Kouzu M, Kasuno T, Tajika M, Yamanaka S, Hidaka J, Appl. Catal. A: Gen., 334(1-2), 357 (2008)
Teo SH, Islam A, Yusaf T, Taufiq-Yap YH, Energy, 78, 63 (2014)
Hassan M, Robiah Y, Thomas SY, Rashid U, Taufiq-Yap YH, Appl. Catal. A: Gen., 425-426, 184 (2012)
Yoosuk B, Udomsap P, Puttasawat B, Appl. Catal. A: Gen., 395(1-2), 87 (2011)
Gupta AR, Yadav SV, Rathod VK, Fuel, 158, 800 (2015)
Jaiyen S, Naree T, Ngamcharussrivichai C, Renew. Energy, 74, 433 (2015)
Boey PL, Maniam GP, Hamid SA, Ali DMH, J. Am. Oil Chem. Soc., 88, 283 (2011)
Ilgen O, Fuel, 92, 452 (2011)
Lin YC, Chen SC, Chen CE, Yang PM, Jhang SR, Fuel, 135, 435 (2014)
Khemthong P, Luadthong C, Nualpaeng W, Changsuwan P, Tongprem P, Viriya-Empikul N, Faungnawakij K, Catal. Today, 190(1), 112 (2012)
Patil PD, Gude VG, Camacho LM, Deng S, Energy Fuels, 24, 1298 (2010)
Chen KS, Lin YC, Hsu KH, Wang HK, Energy, 38(1), 151 (2012)
Singh S, Patel A, J. Clean Prod., 72, 46 (2014)
Bala DD, Souza K, Misra M, Chidambaram D, J. Clean Prod., 104, 273 (2015)
Brunschwig C, Moussavou W, Blin J, Prog. Energy Combust. Sci., 38(2), 283 (2012)
Obadiah A, Swaroopa GA, Kumar SV, Jeganathan KR, Ramasubbu A, Bioresour. Technol., 116, 512 (2012)
Farooq M, Ramli A, Naeem A, Renew. Energy, 76, 362 (2015)
Joshi G, Rawat DS, Lamba BY, Bisht KK, Kumar P, Kumar N, Kumar S, Energy Conv. Manag., 96, 258 (2015)
Buasri A, Ksapabutr B, Panapoy M, Chaiyut N, Korean J. Chem. Eng., 29(12), 1708 (2012)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로