ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 7, 2016
Accepted July 2, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Enhancement of NO absorption in ammonium-based solution using heterogeneous Fenton reaction at low H2O2 consumption

Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
Korean Journal of Chemical Engineering, December 2016, 33(12), 3407-3416(10), 10.1007/s11814-016-0195-2
downloadDownload PDF

Abstract

A novel NO removal system is designed, where NO is initially oxidized by .OH radicals from the decomposition of hydrogen peroxide (H2O2) over hematite and then absorbed by ammonium-based solution. According to the high performance liquid chromatography (HPLC) profile and the isopropanol injection experiments, the .OH radicals are proved to play a critical role in NO removal. The NO removal efficiency primarily depends on H2O2 concentration, gas hourly space velocity (GHSV), H2O2 feeding rate and reaction temperature, while the flue gas temperature slightly affects the NO removal efficiency. The low H2O2 consumption makes this system a promising technique in NO removal process using wet-method. The evolution of catalyst in reaction is analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), Fourier Transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The nitrite ion and nitrate ion in aqueous solution are detected by the continuous phase flow analyzer. Finally, the macrokinetic parameters of the NO oxidation are obtained by using the initial rate method.

References

Jia Y, Du D, Zhang X, Ding X, Zhong O, Korean J. Chem. Eng., 30(9), 1735 (2013)
Jin DS, Deshwal BR, Park YS, Lee HK, J. Hazard. Mater., 135(1-3), 412 (2006)
Zhao Y, Liu F, Guo T, Zhao Y, Science in China Series E: Technological Sciences, 52, 1768 (2009).
Liu YX, Zhang J, Sheng CD, Zhang YC, Zhao LA, Chem. Eng. J., 162(3), 1006 (2010)
Zhang J, Zhang R, Chen X, Tong M, Kang WZ, Guo SP, Zhou YB, Lu J, Ind. Eng. Chem. Res., 53(15), 6450 (2014)
Zhao Y, Han YH, Guo TX, Ma TZ, Energy, 67, 652 (2014)
Park HW, Choi S, Park DW, J. Hazard. Mater., 285, 117 (2015)
Zhao Y, Hao RL, Qi M, Chem. Eng. J., 269, 159 (2015)
Zhao Y, Hao RL, Guo Q, Feng YN, Fuel Process. Technol., 137, 8 (2015)
Sada E, Kumazawa H, Kudo I, Kondo T, Chem. Eng. Sci., 33, 315 (1978)
Chu H, Chien TW, Li S, Sci. Total Environ., 275, 127 (2001)
Wei J, Luo Y, Yu P, Cai B, Tan H, J. Ind. Eng. Chem., 15(1), 16 (2009)
Fennv H, Qin Z, Environ. Pollut., 5, 004 (2012)
Fang P, Cen CP, Wang XM, Tang ZJ, Tang ZX, Chen DS, Fuel Process. Technol., 106, 645 (2013)
Chung L, Huang HS, Phoenix-nasa low temperature multipollutant (no x, so x & mercury) control system for fossil fuel combustion, Challenges of power engineering and environment, Springer, 710 (2007).
Pouran SR, Raman AAA, Daud WMAW, J. Clean Prod., 64, 24 (2014)
Pereira MC, Oliveira LCA, Murad E, Clay Min., 47, 285 (2012)
Ding J, Zhong Q, Zhang SL, J. Mol. Catal. A-Chem., 393, 222 (2014)
Ding J, Zhong Q, Zhang SL, Song FJ, Bu YF, Chem. Eng. J., 243, 176 (2014)
Ding J, Zhong Q, Zhang SL, Cai W, J. Hazard. Mater., 283, 633 (2015)
Huang XM, Ding J, Zhong Q, Appl. Surf. Sci., 326, 66 (2015)
Liu YX, Zhang J, Pan JF, Tang AK, Energy Fuels, 26(9), 5430 (2012)
Liu YX, Zhang J, Wang ZL, Chem. Eng. J., 197, 468 (2012)
Liu YX, Zhang J, Yin YS, AIChE J., 61(4), 1322 (2015)
Lu Y, Xiong Y, Gao M, Proceedings of the CSEE, 28, 44 (2008)
Kwan WP, Voelker BM, Environ. Sci. Technol., 37, 1150 (2003)
Pham ALT, Lee C, Doyle FM, Sedlak DL, Environ. Sci. Technol., 43, 8930 (2009)
Lousada CM, Jonsson M, J. Phys. Chem. C, 114, 11202 (2010)
Milne L, Stewart I, Bremner DH, Ultrason. Sonochem., 20, 984 (2013)
Rendon JL, Serna CJ, Clay Min., 16, 375 (1981)
Wolska E, Zeitschrift fur Kristallographie-Crystalline Materials, 154, 69 (1981)
Gao CX, Liu QF, Xue DS, J. Mater. Sci. Lett., 21, 1781 (2002)
Li DAN, Wang X, Xiong G, Lu L, Yang X, Wang XIN, J. Mater. Sci. Lett., 16, 493 (1997)
Zhang Q, Lee I, Joo JB, Zaera F, Yin Y, Acc. Chem. Res., 46, 1816 (2013)
Guo RT, Hao JK, Pan WG, Yu YI, Sep. Sci. Technol. (2014)
Zhao Y, Wen XY, Guo TX, Zhou JH, Fuel Process. Technol., 128, 54 (2014)
Fang P, Cen CP, Tang ZX, Zhong PY, Chen DS, Chen ZH, Chem. Eng. J., 168(1), 52 (2011)
Dawei Q, Jichao Z, Menglong G, Yuanquan X, Proceedings of the CSEE (2013).
Guo TX, Experimental investigation on simultaneous removal of so 2 and no x in liquid phase by new-type complex absorbent, J. North China Electr. Power Univ., 69 (2011).
Zhao Y, Hao RL, Zhang P, Zhou SH, Energy Fuels, 28(10), 6502 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로