Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 23, 2016
Accepted July 12, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Production and characterization of cellobiose dehydrogenase from Phanerochaete chrysosporium KCCM 60256 and its application for an enzymatic fuel cell
Han Suk Choi
Dong Sup Kim
Laxmi Prasad Thapa
Sang Jun Lee
Sung Bong Kim
Jaehoon Cho1
Chulhwan Park2
Seung Wook Kim†
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea 1Green Manufacturing Process R&D Group, Korea Institute of Industrial Technology (KITECH), Chonan 31056, Korea 2Department of Chemical Engineering, Kwangwoon University, Nowon-gu, Seoul 01897, Korea
kimsw@korea.ac.kr
Korean Journal of Chemical Engineering, December 2016, 33(12), 3434-3441(8), 10.1007/s11814-016-0205-4
Download PDF
Abstract
The enzyme cellobiose dehydrogenase (CDH), with high ability of electron transport, has been widely used in enzymatic fuel cells or biosensors. In this study, the cellobiose dehydrogenase gene from Phanerochaete chrysosporium KCCM 60256 was amplified and expressed in the methylotrophic yeast Pichia pastoris X-33. The recombinant enzyme (PcCDH) was purified using a metal affinity chromatography under non-denaturing conditions. The purified enzyme was analyzed by SDS-PAGE, confirming a corresponding band about 100 kDa. The enzyme activity of this purified PcCDH was determined as 1,845U/L (65mg/L protein). The enzyme showed the maximum activity at pH 4.5 and high activity in broad ranges of temperature from 30 ℃ to 60 ℃. Moreover, the application of PcCDH to enzymatic fuel cell (EFC) was demonstrated. Lactose was used as the substrate in the EFC system; anode and cathode were immobilized with PcCDH and laccase, respectively. The cell’s open circuit voltage and maximum power density of the EFC system were, respectively, determined as 0.435 V and 314 μW/cm2 (at 0.247 V) with 10 mM lactose.
References
Mathieu B, Jean-Guy B, Laetitia P, Jean-C S, Microb. Cell. Fac., 10, 113 (2011)
Henriksson G, Sild V, Szabo IJ, Pettersson G, Johansson G, Biochim. Biophys. Acta, 1383, 48 (1998)
Desriani, Stefano F, Koji S, Biochem. Biophys. Res. Commun., 391, 46 (2010)
Igarashi K, Verhagen MF, Samejima MM, Schulein M, Eriksson KE, J. Biol. Chem., 274, 3338 (1999)
Hallberg BM, Bergfors T, Backbro K, Pettersson G, Henriksson G, Divne C, Structure., 8, 79 (2000)
Henriksson G, Johansson G, Pettersson G, J. Biotechnol., 78, 93 (2000)
Kim EJ, Choi HS, Kang SW, Song KH, Han SO, Park C, Kim SW, Korean J. Chem. Eng., 29(1), 77 (2012)
Henriksson G, Ander P, Pettersson B, Pettersson G, Appl. Microbiol. Biotechnol., 42(5), 790 (1995)
Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtas-Wasilewska M, Cho NS, Hofrichter M, Rogalski J, Genet. Biol., 27, 175 (1999)
Huang F, Fang J, Lu X, Gao P, Chen J, Chin. Sci. Bull., 46, 1956 (2001)
Kim E, Song YS, Choi HS, Yoo HY, Kang SW, Song KH, Han SO, Kim SW, Biopocess. Biotechnol. Eng., 17, 55 (2012)
Sulej J, Janusz G, Osinska-Jaroszuk M, Rachubik P, Mazur A, Komaniecka I, Choma A, Rogalski J, Appl. Biochem. Biotechnol., 176(6), 1638 (2015)
Ludwig R, Ortiz R, Schulz C, Harreither W, Sygmund C, Gorton L, Anal. Bioanal. Chem., 405, 3637 (2013)
Szabo IJ, Johansson G, Pettersson G, J. Biotechnol., 48, 221 (1996)
Baminger U, Nidetzky B, Kulbe KD, Haltrich D, J. Microbiol. Methods, 35, 253 (1999)
Lee HU, Yoo HY, Lkhagvasuren T, Song YS, Park C, Kim J, Kim SW, Biosens. Bioelectron., 42, 342 (2013)
Kim DS, Kim SB, Yan X, Lee JH, Yoo HY, Chun Y, Cho J, Park C, Lee J, Kim SW, J. Electrochem. Soc., 162(10), G113 (2015)
Lee JY, Shin HY, Kang SW, Park C, Kim SW, Biosens. Bioelectron., 26, 2658 (2011)
Cereghino JL, Cregg JM, Fems Microbiol. Rev., 24, 45 (2000)
Gachhui R, Presta A, Bentley DF, Abu-Soud HM, McArthur R, Brudvig G, Ghosh DK, Stuehr DJ, J. Biol. Chem., 271, 594 (1996)
Leber A, Hemmens B, Klosch B, Goessler W, Raber G, Mayer B, Schmidt K, J. Biol. Chem., 274, 58 (1999)
Coman V, Vaz-Dominguez C, Ludwig R, Herreither W, Haltrich D, Lacey ALD, Ruzgas T, Gorton L, Shleev S, Phys. Chem. Chem. Phys., 10, 6093 (2008)
Tasca F, Gorton L, Harreither W, Haltrich D, Ludwig R, Noll G, J. Phys. Chem. C, 112, 13668 (2008)
Tasca F, Gorton L, Harreither W, Haltrich D, Ludwig R, Noll G, Anal. Biochem., 81, 2791 (2009)
Salaj-Kosla U, Scanlon MD, Baumeister T, Zahma K, Ludwig R, Conghaile PO, MacAodha D, Leech D, Anal. Biochem., 405, 3823 (2013)
Zhang RF, Fan ZL, Kasuga T, Protein Expr. Purif., 75(1), 63 (2011)
Harreither W, Felice AK, Paukner R, Gorton L, Ludwig R, Sygmund C, Biotechnol. J., 7, 1359 (2012)
Kannan N, Aravindan R, E. J. Chem., 6, 979 (2009)
Batra A, Saxena RK, Biochem., 40, 1533 (2005)
Samejima M, Eriksson KEL, Eur. J. Biochem., 207, 103 (1992)
Jones GD, Wilson MT, Biochem. J., 256, 713 (1988)
Henriksson G, Sild V, Szabo IJ, Pettersson G, Johansson G, Biochim. Biophys. Acta, 1383, 48 (1998)
Desriani, Stefano F, Koji S, Biochem. Biophys. Res. Commun., 391, 46 (2010)
Igarashi K, Verhagen MF, Samejima MM, Schulein M, Eriksson KE, J. Biol. Chem., 274, 3338 (1999)
Hallberg BM, Bergfors T, Backbro K, Pettersson G, Henriksson G, Divne C, Structure., 8, 79 (2000)
Henriksson G, Johansson G, Pettersson G, J. Biotechnol., 78, 93 (2000)
Kim EJ, Choi HS, Kang SW, Song KH, Han SO, Park C, Kim SW, Korean J. Chem. Eng., 29(1), 77 (2012)
Henriksson G, Ander P, Pettersson B, Pettersson G, Appl. Microbiol. Biotechnol., 42(5), 790 (1995)
Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtas-Wasilewska M, Cho NS, Hofrichter M, Rogalski J, Genet. Biol., 27, 175 (1999)
Huang F, Fang J, Lu X, Gao P, Chen J, Chin. Sci. Bull., 46, 1956 (2001)
Kim E, Song YS, Choi HS, Yoo HY, Kang SW, Song KH, Han SO, Kim SW, Biopocess. Biotechnol. Eng., 17, 55 (2012)
Sulej J, Janusz G, Osinska-Jaroszuk M, Rachubik P, Mazur A, Komaniecka I, Choma A, Rogalski J, Appl. Biochem. Biotechnol., 176(6), 1638 (2015)
Ludwig R, Ortiz R, Schulz C, Harreither W, Sygmund C, Gorton L, Anal. Bioanal. Chem., 405, 3637 (2013)
Szabo IJ, Johansson G, Pettersson G, J. Biotechnol., 48, 221 (1996)
Baminger U, Nidetzky B, Kulbe KD, Haltrich D, J. Microbiol. Methods, 35, 253 (1999)
Lee HU, Yoo HY, Lkhagvasuren T, Song YS, Park C, Kim J, Kim SW, Biosens. Bioelectron., 42, 342 (2013)
Kim DS, Kim SB, Yan X, Lee JH, Yoo HY, Chun Y, Cho J, Park C, Lee J, Kim SW, J. Electrochem. Soc., 162(10), G113 (2015)
Lee JY, Shin HY, Kang SW, Park C, Kim SW, Biosens. Bioelectron., 26, 2658 (2011)
Cereghino JL, Cregg JM, Fems Microbiol. Rev., 24, 45 (2000)
Gachhui R, Presta A, Bentley DF, Abu-Soud HM, McArthur R, Brudvig G, Ghosh DK, Stuehr DJ, J. Biol. Chem., 271, 594 (1996)
Leber A, Hemmens B, Klosch B, Goessler W, Raber G, Mayer B, Schmidt K, J. Biol. Chem., 274, 58 (1999)
Coman V, Vaz-Dominguez C, Ludwig R, Herreither W, Haltrich D, Lacey ALD, Ruzgas T, Gorton L, Shleev S, Phys. Chem. Chem. Phys., 10, 6093 (2008)
Tasca F, Gorton L, Harreither W, Haltrich D, Ludwig R, Noll G, J. Phys. Chem. C, 112, 13668 (2008)
Tasca F, Gorton L, Harreither W, Haltrich D, Ludwig R, Noll G, Anal. Biochem., 81, 2791 (2009)
Salaj-Kosla U, Scanlon MD, Baumeister T, Zahma K, Ludwig R, Conghaile PO, MacAodha D, Leech D, Anal. Biochem., 405, 3823 (2013)
Zhang RF, Fan ZL, Kasuga T, Protein Expr. Purif., 75(1), 63 (2011)
Harreither W, Felice AK, Paukner R, Gorton L, Ludwig R, Sygmund C, Biotechnol. J., 7, 1359 (2012)
Kannan N, Aravindan R, E. J. Chem., 6, 979 (2009)
Batra A, Saxena RK, Biochem., 40, 1533 (2005)
Samejima M, Eriksson KEL, Eur. J. Biochem., 207, 103 (1992)
Jones GD, Wilson MT, Biochem. J., 256, 713 (1988)