ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 20, 2016
Accepted July 12, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Highly sensitive and selective dopamine detection by an amperometric biosensor based on tyrosinase/MWNT/GCE

1Interdisciplinary Program of Graduate School for Bioenergy and Biomaterials, Chonnam National University, Gwangju 61186, Korea 2Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea 3Department of Biotechnology & Bioengineering, Chonnam National University, Gwangju 61186, Korea 4Department of Pharmacy, Chosun University, Gwangju 61452, Korea
parkdon55@hanmail.net, dhpark@jnu.ac.kr
Korean Journal of Chemical Engineering, December 2016, 33(12), 3442-3447(6), 10.1007/s11814-016-0207-2
downloadDownload PDF

Abstract

Dopamine (3,4-dihydroxylphenyl ethylamine) is the most significant neurotransmitter in the human nervous system. Abnormal dopamine levels cause fatal neurological disorders, and thus measuring dopamine level in actual samples is important. Although electrochemical methods have been developed for detecting dopamine with high accuracy, certain substances (e.g., ascorbic acid) in actual samples often interfere with electrochemical dopamine detection. We developed tyrosinase-based dopamine biosensor with high sensitivity and selectivity. An electrochemically pretreated tyrosinase/multi-walled carbon nanotube-modified glassy carbon electrode (tyrosinase/MWNT/GCE) was prepared as an amperometric biosensor for selective dopamine detection. For optimizing the biosensor performance, pH, temperature, and scan rate were investigated. The electrochemically pretreated tyrosinase/MWNT/GCE exhibited not only the highest sensitivity (1,323mAM-1cm-2) compared to previously reported tyrosinase-based dopamine sensors, but also good long-term stability, retaining 90% of initial activity after 30 days. Additionally, ascorbic acid, a major interfering substances, was not oxidized at the potential used to detect dopamine oxidation, and the interfering effect of 4mM ascorbic acid was negligible when monitoring 1mM dopamine. Consequently, the electrochemically pretreated tyrosinase/MWNT/GCE is applicable for highly selective and sensitive dopamine detection in actual samples including interfering substances, thereby extending the practical use to monitor and diagnose neurological disorders.

References

Tsai YC, Chiu CC, Sens. Actuators B-Chem., 125, 10 (2007)
Min K, Park DH, Yoo YJ, J. Biotechnol., 146, 40 (2010)
Apetrei IM, Apetrei C, Sens. Actuators B-Chem., 178, 40 (2013)
Zehani N, Fortgang P, Lachgar MS, Baraket A, Arab M, Dzyadevych SV, Kherrat R, Jaffrezic-Renault N, Biosens. Bioelectron., 74, 830 (2015)
Min K, Yoo YJ, Talanta, 80, 1007 (2009)
Missale C, Nash SR, Robinson SW, Jaber M, Caron MG, Physiol. Rev., 78, 189 (1998)
Tembe S, Kubal BS, Karve M, D’Souza SF, Anal. Chim. Acta, 612, 212 (2008)
Zhou YL, Tian RH, Zhi JF, Biosens. Bioelectron., 22, 822 (2007)
Ros JR, Rodriguez-Lopez JN, Garcia-Canovas F, Biochem. J., 295, 309 (1993)
Lee JH, Park JY, Min K, Cha HJ, Choi SS, Yoo YJ, Biosens. Bioelectron., 25, 1566 (2010)
Min K, Kim J, Park K, Yoo YJ, J. Mol. Catal. B-Enzym., 83, 87 (2012)
Roychoudhury A, Basu S, Jha SK, Biosens. Bioelectron., 16, 72 (2016)
Lupu S, Lete C, Balaure PC, Campo FJD, Munoz FX, Lakard B, Hihn JY, Sens. Actuators B-Chem., 181, 136 (2013)
Nguyen CV, Delzeit L, Cassell AM, Li J, Han J, Meyyappan M, Nano Lett., 2, 1079 (2002)
Ku SH, Palanisamy S, Chen SM, J. Colloid Interface Sci., 411, 182 (2013)
Wei H, Sun JJ, Xie Y, Lin CG, Wang YM, Yin WH, Chen GN, Anal. Chim. Acta, 588, 297 (2007)
Choi O, Kim BC, An JH, Min K, Kim YH, Um Y, Oh MK, Sang BI, Enzyme Microb. Technol., 49(5), 441 (2011)
Li YH, Jiang YY, Mo T, Zhou HF, Li YC, Li SX, J. Electroanal. Chem., 767, 84 (2016)
Selinheimo E, NiEidhin D, Steffensen C, Nielsen J, Lomascolo A, Halaouli S, Record E, O’Beirne D, Buchert J, Kruus K, J. Biotechnol., 130, 471 (2007)
Donato L, Algieri C, Rizzi A, Giorno L, J. Membr. Sci., 454, 346 (2014)
Bayramoglu G, Akbulut A, Arica MY, J. Hazard. Mater., 244-245, 528 (2013)
Dincer A, Becerik S, Aydemir T, Int. J. Biol. Macromol., 50, 815 (2012)
Hervas Perez JP, Lopez MSP, Lopez-Cabarcos E, Lopez-Ruiz B, Biosens. Bioelectron., 22, 429 (2006)
Maciejewska J, Pisarek K, Bartosiewicz I, Krysinski P, Jackowska K, Biegunski AT, Electrochim. Acta, 56(10), 3700 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로