ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 25, 2016
Accepted July 18, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

CO2 absorption, density, viscosity and vapor pressure of aqueous potassium carbonate+2-methylpiperazine

Green Energy Process Laboratory, Climate Change Research Division, Korea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea 1Department of Chemical Engineering, University of Seoul, Siripdae-gil 13, Dongdaemun-gu, Seoul 02504, Korea
Korean Journal of Chemical Engineering, December 2016, 33(12), 3473-3486(14), 10.1007/s11814-016-0210-7
downloadDownload PDF

Abstract

The physical properties of the absorbent are important for designing a CO2 capture process. The density and viscosity are used to calculate the mass transfer coefficient that determines the height of the absorber. Furthermore, these physical data affect the selection of liquid pump and pipe lines. Vapor pressure is a factor that estimates absorbent loss and condenser size. In this study, the physical properties of the aqueous potassium carbonate (K2CO3)+2-methylpiperazine (2MPZ) solution were obtained in a temperature range from 303.15 K to 343.15 K. The physical properties of the different aqueous K2CO3+2MPZ solutions (various amine concentrations and amounts of CO2 absorbed) were measured to obtain the parameters for process design. A regression analysis was conducted for the experimental data. The densities of the aqueous K2CO3+2MPZ solutions increased when the amounts of absorbed CO2 or 2MPZ concentrations were increased. The densities and viscosities of the absorbents decreased according to the increase in temperature. The viscosities of the absorbent increased when 2MPZ concentrations were increased. The temperature dependency of vapor pressure follows the Antoine equation; the CO2 gas and aqueous solution of a base follows the vapor pressure variation of the mixed solution.

References

Bello A, Idem RO, Ind. Eng. Chem. Res., 45(8), 2569 (2006)
Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C, Chem. Eng. Res. Des., 89(9A), 1609 (2011)
Astarita G, Mass transfer with chemical reaction, Elsevier (1967).
Baker R, McCrea D, The Benfield LOHEAT process: an improved HPC absorption process, in Presented at AIChE 1981 Spring National Meeting, Houston TX (1981).
Bartoo R, Chem. Eng. Prog., 80, 35 (1984)
Bartoo R, Gemborys T, Wolf C, Recent improvements to the benfield process extend its use, in Nitrogen'91 Conference (1991).
Furukawa S, Bartoo R, Improved Benfield process for ammonia plants, Universal Oil Products, Des Plaines, IL, USA (1997).
Yoon YI, Kim YE, Nam SC, Jeong SK, Park SY, Youn MH, Park KT, Energy Procedia, 63, 1745 (2014)
Amundsen TG, Oi LE, Eimer DA, J. Chem. Eng. Data, 54(11), 3096 (2009)
Weiland RH, Dingman JC, Cronin DB, Browning GJ, J. Chem. Eng. Data, 43(3), 378 (1998)
Sherwood T, Shipley G, Holloway F, Ind. Eng. Chem., 30, 765 (1938)
Zhang Y, Chen H, Chen CC, Plaza JM, Dugas R, Rochelle GT, Ind. Eng. Chem. Res., 48(20), 9233 (2009)
Mirzaei S, Shamiri A, Aroua MK, Rev. Chem. Eng., 31(6), 521 (2015)
Choi JH, Oh SG, Jo M, Yoon YI, Jeong SK, Nam SC, Chem. Eng. Sci., 72, 87 (2012)
Gorset O, Knudsen JN, Bade OM, Askestad I, Energy Procedia, 63, 6267 (2014)
Rochelle G, Chen E, Freeman S, Van Wagener D, Xu Q, Voice A, Chem. Eng. J., 171(3), 725 (2011)
Singh D, Croiset E, Douglas PL, Douglas MA, Energy Conv. Manag., 44(19), 3073 (2003)
Romeo LM, Bolea I, Escosa JM, Appl. Therm. Eng., 28, 1039 (2008)
Khimeche K, Djellouli F, Dahmani A, Mokbel I, J. Chem. Eng. Data, 56(12), 4972 (2011)
Sanyal D, Vasishtha N, Saraf DN, Ind. Eng. Chem. Res., 27, 2149 (1988)
Smith K, Xiao G, Mumford K, Gouw J, Indrawan I, Thanumurthy N, Quyn D, Cuthbertson R, Rayer A, Nicholas N, Energy Fuels, 28, 299 (2013)
Astarita G, Savage DW, Longo JM, Chem. Eng. Sci., 36, 581 (1981)
Han JY, Jin J, Eimer DA, Melaaen MC, J. Chem. Eng. Data, 57(4), 1095 (2012)
Maham Y, Teng TT, Hepler LG, Mather AE, J. Solution Chem., 23, 195 (1994)
Maham Y, Liew CN, Mather A, J. Solution Chem., 31, 743 (2002)
Arachchige US, Aryal N, Eimer DA, Melaaen MC, Ann. T. Nord. Rheol. Soc., 21, 299 (2013)
Belabbaci A, Razzouk A, Mokbel I, Jose J, Negadi L, J. Chem. Eng. Data, 54(8), 2312 (2009)
Kim I, Svendsen HF, Borresen E, J. Chem. Eng. Data, 53(11), 2521 (2008)
Wu SH, Caparanga AR, Leron RB, Li MH, Exp. Therm. Fluid Sci., 48, 1 (2013)
Svensson H, Hulteberg C, Karlsson HT, Energy Procedia, 63, 750 (2014)
Riesenfeld FC, Kohl AL, Gas purification, Gulf Publishing Company (1974).
Kim YE, Choi JH, Nam SC, Yoon YI, J. Ind. Eng. Chem., 18(1), 105 (2012)
Kim YE, Yun SH, Choi JH, Nam SC, Park SY, Jeong SK, Yoon YI, Energy Fuels, 29(4), 2582 (2015)
Rochelle GT, Goff G, Cullinane T, Freguia S. Research results for CO2 capture from flue gas by aqueous absorption/stripping, in Proceedings of the Laurance Reid Gas Conditioning Conference (2002).
Song JH, Park SB, Yoon JH, Lee H, J. Chem. Eng. Data, 41(5), 1152 (1996)
Lee S, Choi SI, Maken S, Song HJ, Shin HC, Park JW, Jang KR, Kim JH, J. Chem. Eng. Data, 50(5), 1773 (2005)
Geng Y, Chen S, Wang T, Yu D, Peng C, Liu H, Hu Y, J. Mol. Liq., 143, 100 (2008)
Zhao YS, Zhang XP, Zeng SJ, Zhou Q, Dong HF, Tian XA, Zhang SJ, J. Chem. Eng. Data, 55(9), 3513 (2010)
Song HJ, Lee MG, Kim H, Gaur A, Park JW, J. Chem. Eng. Data, 56(4), 1371 (2011)
Murshid G, Shariff AM, Keong LK, Bustam MA, J. Chem. Eng. Data, 56(5), 2660 (2011)
Jayarathna SA, Weerasooriya A, Dayarathna S, Eimer DA, Melaaen MC, J. Chem. Eng. Data, 58(4), 986 (2013)
Fu D, Chen LH, Qin LG, Fluid Phase Equilib., 319, 42 (2012)
Antoine C, CR Hebd. Seances Acad. Sci., 107, 681 (1888)
Thomson GW, Chem. Rev., 38, 1 (1946)
Gibbons R, Laughton A, Fluid Phase Equilib., 18, 61 (1984)
Stryjek R, Vera J, Fluid Phase Equilib., 25, 279 (1986)
Brandes BT, Ind. Eng. Chem. Res., 44(3), 639 (2005)
Kamps APS, Meyer E, Rumpf B, Maurer G, J. Chem. Eng. Data, 52(3), 817 (2007)
Shiflett MB, Kasprzak DJ, Junk CP, Yokozeki A, J. Chem. Thermodyn., 40(1), 25 (2008)
Kuranov G, Rumpf B, Smirnova NA, Maurer G, Ind. Eng. Chem. Res., 35(6), 1959 (1996)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로