ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 2, 2016
Accepted July 18, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Experimental solubility and absorption mechanism of dilute SO2 in aqueous diethylene glycol dimethyl ether solution

College of Chemical Engineering, Inner Mongolia University of Technology, Huhhot 010051, China 1Department of Applied Chemistry, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
xhwei@pku.edu.cn
Korean Journal of Chemical Engineering, December 2016, 33(12), 3493-3503(11), 10.1007/s11814-016-0211-6
downloadDownload PDF

Abstract

SO2 absorption capabilities of DEGDME+H2O system with different compositions were systemically investigated. The DEGDME+H2O system exhibited superior SO2 absorption capability and optimal desorption property with a desorption rate of higher than 94% under the desorption conditions. In addition, it has been demonstrated that the DEGDME+H2O system possessed remarkable SO2 absorbing and releasing capability after multiple recycles. Moreover, GLE data were measured for dilute SO2 in the system of DEGDME+H2O, in which SO2 partial pressures were determined in the range of 0 to 140 Pa. By fitting of GLE data, HLC, ΔH, ΔS and ΔG of SO2 absorption process were obtained. UV, FTIR, 1H-NMR, and 13C-NMR spectra of absorbing systems in the SO2 absorption processes were studied to elucidate the absorption mechanism. On the basis of the spectral results, the intermolecular hydrogen bonding and S...O interaction between SO2 with the absorption system were discussed.

References

Zhao Y, Han YH, Chen C, Ind. Eng. Chem. Res., 51(1), 480 (2012)
Zhi J, Yu X, Bao J, Jiang X, Yang H, Korean J. Mater. Res., 33(6), 1823 (2016)
Zhou YG, Zhang MC, Wang DF, Wang L, Ind. Eng. Chem. Res., 44(23), 8830 (2005)
Siddiqi MA, Krissmann J, Petersgerth P, Luckas M, Lucas K, J. Chem. Thermodyn., 28(7), 685 (1996)
Pereda S, Thomsen K, Rasmussen P, Chem. Eng. Sci., 55(14), 2663 (2000)
Krissmann J, Siddiqi MA, Lucas K, Fluid Phase Equilib., 141(1-2), 221 (1997)
Zimmermann K, Pasel C, Luckas M, Herbell JD, Fluid Phase Equilib., 279(2), 105 (2009)
Valtz A, Coquelet C, Richon D, Int. J. Thermophys., 25, 1695 (2004)
Zhang JB, Zhang PY, Chen GH, Han F, Wei XH, J. Chem. Eng. Data, 53(7), 1479 (2008)
Zhang JB, Liu LH, Huo TR, Liu ZY, Zhang T, Wei XH, J. Chem. Thermodyn., 43(10), 1463 (2011)
Zhang N, Zhang JB, Zhang YF, Bai J, Huo TR, Wei XH, Fluid Phase Equilib., 313, 7 (2012)
Guo B, Zhao T, Sha F, Zhang F, Li Q, Zhang J, Korean J. Chem. Eng., 33(6), 1883 (2016)
Sciamanna SF, Scott L, Ind. Eng. Chem. Res., 27, 492 (1988)
Revelli AL, Mutelet F, Jaubert JN, J. Phys. Chem. B, 114(40), 12908 (2010)
Sun SY, Yan YX, Sun ZC, Xu QX, Wei XH, RSC Adv., 5, 8706 (2015)
Niu YX, Gao F, Sun SY, Xiao JB, Wei XH, Fluid Phase Equilib., 344, 65 (2013)
Chang Y, Zhang J, Li Q, Li L, Guo B, Zhao T, Korean J. Chem. Eng., 31(2), 2245 (2014)
Douabul A, Riley J, J. Chem. Eng. Data, 24, 274 (1979)
Rumpf B, Maurer G, Fluid Phase Equilib., 81, 241 (1992)
Li H, Liu DZ, Wang FA, J. Chem. Eng. Data, 47(4), 772 (2002)
Li H, Jiao X, Chen W, Phys. Chem. Liq., 52, 349 (2014)
Rabe AE, Harris JF, J. Chem. Eng. Data, 8, 333 (1963)
Vosolsobe J, Simecek S, Michalek J, Kadler B, Chem. Prum., 15, 401 (1965)
Xu QX, Sun SY, Lan GJ, Xiao JB, Zhang JB, Wei XH, J. Chem. Eng. Data, 60(1), 2 (2015)
Dethlefsen C, Hvidt A, J. Chem. Thermodyn., 17, 193 (1985)
Aminabhavi TM, Gopalakrishna B, J. Chem. Eng. Data, 40(2), 462 (1995)
Rodriguez-Sevilla J, Alvarez M, Liminana G, Diaz MC, J. Chem. Eng. Data, 47(6), 1339 (2002)
Anthony JL, Maginn EJ, Brennecke JF, J. Phys. Chem. B, 106(29), 7315 (2002)
Henni A, Tontiwachwuthikul P, Chakma A, Can. J. Chem. Eng., 83(2), 358 (2005)
Bamford HA, Poster DL, Baker JE, Environ. Toxicol. Chem., 18, 1905 (1999)
Fu XC, Shen WX, Physical Chemistry, 5th Ed. Higher Press, Beijing (2005).
Jin MJ, Hou YC, Wu WZ, Ren SH, Tian SD, Xiao L, Lei ZG, J. Phys. Chem. B, 115(20), 6585 (2011)
Zhang JB, Han F, Wei XH, Shui LK, Gong H, Zhang PY, Ind. Eng. Chem. Res., 49(5), 2025 (2010)
Douabul A, Riley J, J. Chem. Eng. Data, 24, 274 (1979)
Al-Enezi G, Ettouney H, El-Dessouky H, Fawzi N, Ind. Eng. Chem. Res., 40(5), 1434 (2001)
Shaw AC, Romero MA, Elder RH, Ewan BCR, Allen RWK, Int. J. Hydrog. Energy, 36(8), 4749 (2011)
Augusta S, Anal. Chem., 45, 1744 (1973)
Lasgabaster A, Abad MJ, Barral L, Eur. Polym. J., 42, 3121 (2006)
Vandam MH, Lamine AS, Roizard D, Lochon P, Roizard C, Ind. Eng. Chem. Res., 36(11), 4628 (1997)
Yarra M, Rachapudi BNP, Mallampalli LKS, Eur. J. Inorg. Chem., 5, 260 (2014)
Frech R, Huang WW, Macromolecules, 28, 1246 (1994)
William DH, Fleming I, Spectroscopy Methods in Org. chemistry, 6th Ed. New York, McGraw-Hill (2005).
Zhao XY, Sun XY, Spectral identification for organic molecular structure, 2th Ed. Beijing (2010).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로