ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 1, 2016
Accepted July 18, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Water gas shift reaction in a catalytic bubbling fluidized bed reactor

Department of Mineral Resources & Energy Engineering, Chonbuk National University, Jeonju, Jeonbuk 54896, Korea
jmsohn@chonbuk.ac.kr
Korean Journal of Chemical Engineering, December 2016, 33(12), 3523-3528(6), 10.1007/s11814-016-0208-1
downloadDownload PDF

Abstract

The water gas shift reaction in a catalytic bubbling fluidized bed reactor was investigated by using simulated syngas (40% H2, 40% CO and 20% CO2) for the pre-combustion CO2 capture and hydrogen production application. A commercial low temperature shift (LTS) catalyst with particle sizes of 200-300 μm was used to investigate the promotion effect by exchanging the fixed bed reaction with the fluidized bed reactor. The effects of the reactor temperature (180-400 ℃), space velocity (800-4,800 cm3/hㆍg), and steam/CO ratio (1.0-2.5) on the CO conversion and syngas composition were determined, and the highest CO conversion was 86.8% at 300 ℃ with the LTS catalyst at a space velocity of 800 cm3/hㆍg and steam/CO ratio of 2.5. The experiments exhibited an improvement in activity and a conversion reached that given by equilibrium at temperatures over 300 ℃. Also, the performance was much improved than that when a fixed bed system was used.

References

Lee SH, Kim JN, Eom WH, Ryi SK, Park JS, Baek IH, Chem. Eng. J., 207-208, 521 (2012)
Fernandez E, Helmi A, Coenen K, Melendez J, Viviente JL, Tanaka DAP, Annaland MV, Gallucci F, Int. J. Hydrog. Energy, 40(8), 3506 (2015)
Agrell J, Birgersson H, Boutonnet M, Melian-Cabrera I, Navarro RM, Fierro JLG, J. Catal., 219(2), 389 (2003)
Lee SH, Lee JG, Kim JH, Choi YC, Fuel, 85(5-6), 803 (2006)
Shoko E, McLellan B, Dicks AL, da Costa JCD, Int. J. Coal Geol., 65(3-4), 213 (2006)
Lee SH, Choi KB, Lee JG, Kim JH, Korean J. Chem. Eng., 23(4), 576 (2006)
Lee SH, Yoon SJ, Ra HW, Il Son Y, Hong JC, Lee JG, Energy, 35(8), 3239 (2010)
Hydrogen from Coal Program RD & D Plan, U.S. Dept. of Energy (2007).
Bustamante F, The High-Temperature, High-Pressure Homogeneous Water-Gas Shift Reaction in a Membrane Reactor, Ph.D. Thesis, University of Pittsburgh (2004).
Lim H, Korean J. Chem. Eng., 32(8), 1522 (2015)
Costa JLR, Marchetti GS, Rangel MDC, Catal. Today, 77(3), 205 (2002)
Johnsen RE, Molenbroek AM, Stahl K, J. Appl. Crystallogr., 39, 519 (2006)
Vandenbussche KM, Froment GF, J. Catal., 161(1), 1 (1996)
Choi Y, Stenger HG, J. Power Sources, 124(2), 432 (2003)
Patil CS, Annaland MV, Kuipers JAM, Ind. Eng. Chem. Res., 44(25), 9502 (2005)
Kunii D, Levenspiel O, Fluidization Engineering, Butterworth-Heinemann, Massachusetts, USA (1991).
Lee SH, Lee DH, Kim SD, Korean J. Chem. Eng., 18(3), 387 (2001)
Lee SH, Kim SD, Park SH, Korean J. Chem. Eng., 19(6), 1020 (2002)
Lim JH, Shin JH, Bae K, Kim JH, Lee DH, Han JH, Lee DH, Korean J. Chem. Eng., 32(9), 1938 (2015)
Ruettinger W, Ilinich O, Farrauto RJ, J. Power Sources, 118(1-2), 61 (2003)
Arbelaadez O, Reina TR, Ivanova S, Bustarnante F, Villa AL, Centeno MA, Odriozola JA, Appl. Catal. A: Gen., 497, 1 (2015)
Physical and Thermodynamic Properties of Elements and Compounds, United Catalysts Inc., Louisville, KY (1990).
Ladebeck JR, Wagner JP, in Handbook of Fuel cells, Fundamentals, Technology and Applications, Vielstich W, Lamm A, Gasteiger HA, Ed., Wiley, Chichester, Vol. 3, Part 2, 190 (2003).
Ryu H, Park J, Lee D, Park J, Bae D, Trans. Korean Hydrogen New Energy Soc., 26(2), 96 (2015)
Vandenbussche KM, Froment GF, J. Catal., 161(1), 1 (1996)
Khajeh S, Aboosadi ZA, Honarvar B, J. Natural Gas Sci. Eng., 19, 152 (2014)
van der Laan GP, Beenackers AACM, Appl. Catal. A: Gen., 193(1-2), 39 (2000)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로