ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 18, 2015
Accepted July 10, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries

Department of Energy of Engineering, Dankook University, Cheoan 330-714, Korea
jwlee7@dankook.ac.kr
Korean Journal of Chemical Engineering, February 2016, 33(2), 514-526(13), 10.1007/s11814-015-0154-3
downloadDownload PDF

Abstract

Nickel-rich layered materials are prospective cathode materials for use in lithium-ion batteries due to their higher capacity and lower cost relative to LiCoO2. In this work, spherical Ni0.8Co0.1Mn0.1(OH)2 precursors are successfully synthesized through a co-precipitation method. The synthetic conditions of the precursors - including the pH, stirring speed, molar ratio of NH4OH to transition metals and reaction temperature - are investigated in detail, and their variations have significant effects on the morphology, microstructure and tap-density of the prepared Ni0.8Co0.1Mn0.1 (OH)2 precursors. LiNi0.8Co0.1Mn0.1O2 is then prepared from these precursors through a reaction with 5% excess LiOH· H2O at various temperatures. The crystal structure, morphology and electrochemical properties of the Ni0.8Co0.1Mn0.1 (OH)2 precursors and LiNi0.8Co0.1Mn0.1O2 were investigated. In the voltage range from 3.0 to 4.3 V, LiNi0.8Co0.1Mn0.1O2 exhibits an initial discharge capacity of 193.0mAh g-1 at a 0.1 C-rate. The cathode delivers an initial capacity of 170.4 mAh g-1 at a 1 C-rate, and it retains 90.4% of its capacity after 100 cycles.

References

Kraytsberg A, Ein-Eli Y, Adv. Energy Mater., 2, 922 (2012)
Zaghib K, Mauger A, Groult H, Goodenough J, Julien C, Materials, 6, 1028 (2013)
Ellis BL, Lee KT, Nazar LF, Chem. Mater., 3, 691 (2010)
Liu F, Song S, Xue D, Zhang H, Nanoscale Res. Lett., 7, 149 (2012)
Goodenough JB, Kim Y, Chem. Mater., 22, 587 (2010)
Mizushima K, Jones PC, Wiseman PJ, Goodenough JB, Mater. Res. Bull., 15, 783 (1980)
Whittingham MS, Chem. Rev., 104(10), 4271 (2004)
Ozawa K, Solid State Ion., 69(3-4), 212 (1994)
Wang Z, Wang Z, Guo H, Peng W, Li X, Ceram. Int., 41, 469 (2015)
Amatucci GG, Tarascon JM, Klein LC, Solid State Ion., 83(1-2), 167 (1996)
Tarascon JM, Armand M, Nature, 414, 359 (2001)
Julien CM, Mauger A, Zaghib K, Groult H, Inorganics, 2, 132 (2014)
Kalyani P, Kalaiselvi N, Sci. Technol. Adv. Mater., 6, 689 (2005)
Sun YK, Chen ZH, Noh HJ, Lee DJ, Jung HG, Ren Y, Wang S, Yoon CS, Myung ST, Amine K, Nat. Mater., 11(11), 942 (2012)
Abraham DP, Twesten RD, Balasubramanian M, Petrov I, McBreen J, Amine K, Electrochem. Commun., 4, 620 (2002)
Hwang BJ, Tsai YW, Carlier D, Ceder G, Chem. Mater., 15, 3676 (2003)
Zhang S, Deng C, Fu BL, Yang SY, Ma L, Powder Technol., 198(3), 373 (2010)
Saavedra-Arias JJ, Karan NK, Pradhan DK, Kumar A, Nieto S, Thomas R, Katiyar RS, J. Power Sources, 183(2), 761 (2008)
Lu HQ, Zhou HT, Svensson AM, Fossdal A, Sheridan E, Lu SG, Vullum-Bruer F, Solid State Ion., 249, 105 (2013)
Fey GTK, Chen JG, Wang ZF, Yang HZ, Kumar TP, Mater. Chem. Phys., 87(2-3), 246 (2004)
Fey GTK, Subramanian V, Lu CZ, Solid State Ion., 152-153, 83 (2002)
Fey GTK, Shiu RF, Subramanian V, Chen JG, Chen CL, J. Power Sources, 103(2), 265 (2002)
Ling-jun LI, Xin-hai LI, Zhi-xing W, Ling W, Jun-chao Z, Jin-hui L, Trans. Nonferrous Met. Soc. China., 20, 279 (2010)
Zhang Y, Cao H, Zhang J, Xia BJ, Solid State Ion., 177(37-38), 3303 (2006)
Zhang B, Li L, Zheng J, J. Alloy. Compd., 520, 190 (2012)
Li LJ, Li XH, Wang ZX, Guo HJ, Yue P, Chen W, Wu L, Powder Technol., 206(3), 353 (2011)
Saavedra-Arias JJ, Rao CV, Shojan J, Manivannan A, Torres L, Ishikawa Y, Katiyar RS, J. Power Sources, 211, 12 (2012)
Choo S, Kim HY, Yoon DY, Choi W, Oh SH, Ju JB, Ko JM, Jang H, Cho WI, Korean J. Chem. Eng., 31(5), 905 (2014)
Wu KC, Wang F, Gao LL, Li MR, Xiao LL, Zhao LT, Hu SJ, Wang XJ, Xu ZL, Wu QG, Electrochim. Acta, 75, 393 (2012)
Belharouak I, Lu W, Vissers D, Amine K, Electrochem. Commun., 8, 329 (2006)
Ying JR, Wan CR, Jiang CY, Li YX, J. Power Sources, 99(1-2), 78 (2001)
Cheralathan KK, Kang NY, Park HS, Lee YJ, Choi WC, Ko YS, Park YK, J. Power Sources, 195(5), 1486 (2010)
Lee MH, Kang Y, Myung ST, Sun YK, Electrochim. Acta, 50(4), 939 (2004)
Zhang S, Deng C, Fu BL, Yang SY, Ma L, Powder Technol., 198(3), 373 (2010)
Fu C, Li G, Luo D, Li Q, Fan J, Li L, ACS Appl. Mater. Interfaces, 6, 15822 (2014)
Lin F, Markus IM, Doeff MM, Xin HL, Sci. Rep., 4, 5694 (2014)
Luo D, Li GS, Fu CC, Zheng J, Fan JM, Li Q, Li LP, J. Power Sources, 276, 238 (2015)
Son JT, Cairns E, Korean J. Chem. Eng., 24(5), 888 (2007)
Sekizawa O, Hasegawa T, Kitamura N, Idemoto Y, J. Power Sources, 196(16), 6651 (2011)
Eom J, Kim MG, Cho J, J. Electrochem. Soc., 155(3), A239 (2008)
Bang H, Kim DH, Bae YC, Prakash J, Sun YK, J. Electrochem. Soc., 155(12), A952 (2008)
Chen YP, Zhang Y, Chen BJ, Wang ZY, Lu C, J. Power Sources, 256, 20 (2014)
Liu K, Yang GL, Dong Y, Shi T, Chen L, J. Power Sources, 281, 370 (2014)
Zhao JQ, Aziz S, Wang Y, J. Power Sources, 247, 95 (2014)
Lee KS, Myung ST, Amine K, Yashiro H, Sun YK, J. Electrochem. Soc., 154(10), A971 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로