ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 13, 2015
Accepted August 28, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Energy efficiency of a scaled-up microwave-assisted transesterification for biodiesel production

1Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do 51543, Korea 2Electrical Functional Material Engineering, Korea University of Science and Technology (UST), Changwon-si, Gyeongsangnam-do 51543, Korea 3, Korea
kdh@keri.re.kr
Korean Journal of Chemical Engineering, February 2016, 33(2), 527-531(5), 10.1007/s11814-015-0184-x
downloadDownload PDF

Abstract

We propose a scalable and energy-efficient microwave-assisted chemical reactor for biodiesel production, which is composed of a partially modified conventional 10-L stainless steel vessel and a microwave coupler to enable an optimized microwave injection of 99% power efficiency. The microwave power applied via a waveguide can be directly injected into the reaction vessel using a coupling rod clamped to a pressured microwave window, giving convenience of scale-up of the reactor volume because a conventional microwave transparent vessel like glass is not need. Microwave-assisted transesterification of triglycerides with potassium hydroxide catalyst achieved an accelerated conversion of 95% in 5min. The precisely measured microwave energy consumption was only 87% of the calculated heat requirement for both the reactant and the vessel. Computer simulation studies indicated that the cause of the energy efficiency for microwave heating was the relatively low temperature of the vessel due to a reverse temperature gradient, in contrast to those done with conventional hot wall heating.

References

Nuchter M, Ondruschka B, Bonrath W, Gum A, Green Chem., 6, 128 (2004)
Loupy A, Microwaves in Organic Synthesis, Wiley-VCH, Weinheim, Germany (2002).
Kappe CO, Stadler A, Microwaves in organic and medicinal chemistry, Wiley-VCH, Weinheim (2005).
Kappe CO, Dallinger D, Nat. Rev. Drug. Discov., 5, 51 (2005)
Jobic H, Santander JE, Conner WC, Wittaker G, Giriat G, Harrison A, Ollivier J, Auerbach SM, Phys. Rev. Lett., 106, 157401 (2011)
Robinson J, Kingman S, Irvine D, Licence P, Smith A, Dimitrakis G, Obermayer D, Kappe CO, Phys. Chem. Chem. Phys., 12, 10793 (2010)
Robinson J, Kingman S, Irvine D, Licence P, Smith A, Dimitrakis G, Obermayer D, Kappe CO, Phys. Chem. Chem. Phys., 12, 4750 (2010)
Obermayer D, Gutmann B, Kappe CO, Angew. Chem.-Int. Edit., 48, 8321 (2009)
Schmink JR, Leadbeater NE, Org. Biomol. Chem., 7, 3842 (2009)
Kim D, Choi J, Kim GJ, Seol SK, Jung S, Bioresour. Technol., 102(14), 7229 (2011)
Kappe CO, Angew. Chem.-Int. Edit., 43, 6250 (2004)
Hoz A, Dıaz-Ortiz A, Moreno A, Chem. Soc. Rev., 34, 164 (2005)
Seol SK, Kim D, Jung S, Hwu Y, Mater. Chem. Phys., 131(1-2), 331 (2011)
Moseley JD, Kappe CO, Green Chem., 13, 794 (2011)
Bowman MD, Holcomb JL, Kormos CM, Leadbeater NE, Williams VA, Org. Proc. Res. Dev., 12, 41 (2008)
Nakamura T, Nagahata R, Kunii K, Soga H, Sugimoto S, Takeuchi K, Org. Proc. Res. Dev., 14, 781 (2010)
Muley P, Boldor D, Transactions of the ASABE, 56, 1847 (2013)
Kim D, Choi J, Kim GJ, Seol SK, Ha YC, Vijayan M, Jung S, Kim BH, Lee GD, Park SS, Bioresour. Technol., 102(3), 3639 (2011)
Barnard TM, Leadbeater NE, Boucher MB, Stencel LM, Wilhite BA, Energy Fuels, 21(3), 1777 (2007)
Sims R, Taylor M, Saddler J, Mabee W, From 1st- to 2nd-generation biofuel technologies, OECD/IEA Report (2008).
Hernando J, Leton P, Matia MP, Novella JL, Alvarez-Builla J, Fuel, 86(10-11), 1641 (2007)
Azcan N, Danisman A, Fuel, 87(10-11), 1781 (2008)
Patil PD, Gude VG, Mannarswamy A, Cooke P, Munson-McGee S, Nirmalakhandan N, Lammers P, Deng SG, Bioresour. Technol., 102(2), 1399 (2011)
Sajjadi B, Aziz ARA, Ibrahim S, Renew. Sust. Energ. Rev., 37, 762 (2014)
Saka S, Kusdiana D, Fuel, 80(2), 225 (2001)
Kusdiana D, Saka S, Bioresour. Technol., 91(3), 289 (2004)
Geuens J, Kremsner JM, Nebel BA, Schober S, Dommisse RA, Mittelbach M, Tavernier S, Kappe CO, Maes BUW, Energy Fuels, 22(1), 643 (2008)
Sajjadi B, Aziz ARA, Ibrahim S, Ultrason. Sonochem., 22, 463 (2015)
Sajjadi B, Aziz ARA, Ibrahim S, Ultrason. Sonochem., 24, 193 (2015)
Incropera FP, DeWitt DP, Bergman TL, Lavine AS, Fundamentals of Heat and Mass Transfer (Fifth edition), John Wiley & Sons, Asia (2007).
Kim D, Choi J, Vijayan MT, Jung S, Park S, Lee K, Kim B, Conference Proceeding of the Korean Society for New and Renewable Energy, Junju-city, Korea, Nov. 25-27 (2009).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로