Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 10, 2015
Accepted July 10, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
CO2 fixation and lipid production by microalgal species
Pavani Parupudi
Chandrika Kethineni
Pradip Babanrao Dhamole1
Sandeep Vemula
Prasada Rao Allu2
Mahendran Botlagunta
Sujana Kokilagadda
Srinivasa Reddy Ronda†
Department of Biotechnology, KLEF University, Vaddeswaram-522 502, Guntur, AP, India 1Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India 2Department of Horticulture, Sikkim University, Gangtok, Sikkim, India
Korean Journal of Chemical Engineering, February 2016, 33(2), 587-593(7), 10.1007/s11814-015-0152-5
Download PDF
Abstract
Microalgal species Nannochloropsis limnetica, Botryococcus braunii, and Stichococcus bacillaris were compared for their ability to grow, remove CO2, and accumulate lipids in their biomass under CO2-enriched atmosphere. Overall, N. limnetica outperformed the other two cultures and distinctly exhibited higher specific growth rate (0.999 d.1) and CO2 fixation rate (0.129 gL.1 d.1) with a high specific lipid yield (40% w/w). The volumetric CO2 fixation rate for all three species was validated with biomass productivity and mass transfer methods (P<0.005 and R2=0. 98). At 10% CO2, N. limnetica showed one-and-a-half times more carbon fixation efficiency over B. braunii, and S. bacillaris. On the other hand, total fatty acids of N. limnetica dispalyed an apparent increase in oleic acid. Whereas, under similar conditions, N. limnetica exhibited reduced eicosapentaenoic acid. These findings suggest that at high CO2 conditions, N. limnetica proved to be an efficient CO2 capture algal system and can be considered for biofuel applications.
Keywords
References
Lee B, Choi GG, Choi YE, Sung M, Park MS, Yang JW, Korean J. Chem. Eng., 31(6), 1036 (2014)
Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F, Bioresour. Technol., 102(1), 57 (2011)
Ronda SR, Parupudi PLC, Vemula S, Tumma S, Botlagunta M, Settaluri VS, Lele S, Sharma S, Kandala C, Korean J. Chem. Eng., 31(10), 1839 (2014)
Francisco EC, Neves DB, Jacob-Lopes E, Franco TT, J. Chem. Technol. Biotechnol., 85(3), 395 (2010)
Krienitz L, Wirth M, Limnologica, 36, 204 (2006)
Cheng PF, Ji B, Gao LL, Zhang W, Wang JF, Liu TZ, Bioresour. Technol., 138, 95 (2013)
Olivieri G, Marzocchella A, Andreozzi R, Pinto G, Pollio A, J. Chem. Technol. Biotechnol., 86(6), 776 (2011)
Liu JY, Mukherjee J, Hawkes JJ, Wilkinson SJ, J. Chem. Technol. Biotechnol., 88(10), 1807 (2013)
Mus F, Toussaint JP, Cooksey KE, Fields MW, Gerlach R, Peyton BM, Carlson RP, Appl. Microbiol. Biotechnol., 97(8), 3625 (2013)
Yoo C, Jun SY, Lee JY, Ahn CY, OH HM, Bioresour. Technol., 101, S71 (2010)
Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS, Bioresour. Technol., 100(2), 833 (2009)
Olivieri G, Garganoa I, Andreozzia R, Marottaa R, Marzocchellaa A, Pintob G, Polliob A, Chem. Eng. Trans., 27, 127 (2012)
Olivieri G, Gargano I, Andreozzi R, Marotta R, Marzocchella A, Pinto G, Pollio A, Biochem. Eng. J., 74, 8 (2013)
Huang YT, Lee HT, Lai CW, J. Nanosci. Nanotechnol., 13, 2117 (2013)
Li SW, Luo SJ, Guo RB, Bioresour. Technol., 136, 267 (2013)
Toledo-Cervantes A, Morales M, Novelo E, Revah S, Bioresour. Technol., 130, 652 (2013)
De Morais MG, Costa JAV, J. Biotechnol., 129, 439 (2007)
Widjaja A, Chien CC, Ju YH, J. Taiwan Inst. Chem. E., 40, 13 (2009)
Islam MA, Ayoko GA, Brown R, Stuart D, Heimann K, Procedia. Eng., 56, 591 (2013)
Montoya EYO, Casazza AA, Aliakbarian B, Perego P, Converti A, de Carvalho JCM, Biotechnol. Prog., 30(4), 916 (2014)
Yusof YAM, Basari JMH, Mukti NA, Sabuddin R, Muda AR, Sulaiman S, Makpol S, Ngah WZW, Afr. J. Biotechnol., 10, 13536 (2013)
Tsuzuki M, Ohnuma E, Sato N, Takaku T, Kawaguchi A, Plant Physiol., 93, 851 (1990)
Muradyan EA, Klyachko-Gurvich GL, Tsoglin LN, Sergeyenko TV, Pronina NA, Russ. J. Plant Physiol., 51, 53 (2004)
Hoshida H, Ohira T, Minematsu A, Akada R, Nishizawa Y, J. Appl. Phycol., 17, 29 (2005)
Largeau C, Casadevall E, Berkaloff C, Dhamelincourt P, Phytochemistry, 19, 1043 (1980)
Shen Y, Yuan WQ, Adv. Mater. Res., 393, 655 (2012)
Zhu C, Lee Y, J. Appl. Phycol., 9, 189 (1997)
Ono E, Cuello J, Biosystems Eng., 96, 129 (2007)
Folch J, Lees M, Sloane-Stanley G, J. Biol. Chem., 226, 497 (1957)
Lepage G, Roy CC, J. Lipid Res., 25, 1391 (1984)
Bergman TL, Incropera FP, Lavine AS, DeWitt DP, Fundamentals of heat and mass transfer, Seventh Ed., John Wiley and Sons, New York (2011).
Ge YM, Liu JZ, Tian GM, Bioresour. Technol., 102(1), 130 (2011)
Dayananda C, Sarada R, Rani MU, Shamala TR, Ravishankar GA, Biomass Bioenerg., 31(1), 87 (2007)
Krienitz L, Hepperle D, Stich HB, Weiler W, Phycologia, 39, 19 (2000)
Tang DH, Han W, Li PL, Miao XL, Zhong JJ, Bioresour. Technol., 102(3), 3071 (2011)
Tsuzuki M, Gantar M, Aizawa K, Miyachi S, Plant Cell Physiol., 27, 737 (1986)
Dickson LG, Galloway RA, Patterson GW, Plant. Physiol., 44, 1413 (1969)
Hoffmann M, Marxen K, Schulz R, Vanselow KH, Mar. Drugs, 8, 2526 (2010)
Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S, Appl. Microbiol. Biotechnol., 90(4), 1429 (2011)
Chrismadha T, Borowitzka MA, J. Appl. Phycol., 6, 67 (1994)
Knothe G, Energy Fuels, 22(2), 1358 (2008)
Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F, Bioresour. Technol., 102(1), 57 (2011)
Ronda SR, Parupudi PLC, Vemula S, Tumma S, Botlagunta M, Settaluri VS, Lele S, Sharma S, Kandala C, Korean J. Chem. Eng., 31(10), 1839 (2014)
Francisco EC, Neves DB, Jacob-Lopes E, Franco TT, J. Chem. Technol. Biotechnol., 85(3), 395 (2010)
Krienitz L, Wirth M, Limnologica, 36, 204 (2006)
Cheng PF, Ji B, Gao LL, Zhang W, Wang JF, Liu TZ, Bioresour. Technol., 138, 95 (2013)
Olivieri G, Marzocchella A, Andreozzi R, Pinto G, Pollio A, J. Chem. Technol. Biotechnol., 86(6), 776 (2011)
Liu JY, Mukherjee J, Hawkes JJ, Wilkinson SJ, J. Chem. Technol. Biotechnol., 88(10), 1807 (2013)
Mus F, Toussaint JP, Cooksey KE, Fields MW, Gerlach R, Peyton BM, Carlson RP, Appl. Microbiol. Biotechnol., 97(8), 3625 (2013)
Yoo C, Jun SY, Lee JY, Ahn CY, OH HM, Bioresour. Technol., 101, S71 (2010)
Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS, Bioresour. Technol., 100(2), 833 (2009)
Olivieri G, Garganoa I, Andreozzia R, Marottaa R, Marzocchellaa A, Pintob G, Polliob A, Chem. Eng. Trans., 27, 127 (2012)
Olivieri G, Gargano I, Andreozzi R, Marotta R, Marzocchella A, Pinto G, Pollio A, Biochem. Eng. J., 74, 8 (2013)
Huang YT, Lee HT, Lai CW, J. Nanosci. Nanotechnol., 13, 2117 (2013)
Li SW, Luo SJ, Guo RB, Bioresour. Technol., 136, 267 (2013)
Toledo-Cervantes A, Morales M, Novelo E, Revah S, Bioresour. Technol., 130, 652 (2013)
De Morais MG, Costa JAV, J. Biotechnol., 129, 439 (2007)
Widjaja A, Chien CC, Ju YH, J. Taiwan Inst. Chem. E., 40, 13 (2009)
Islam MA, Ayoko GA, Brown R, Stuart D, Heimann K, Procedia. Eng., 56, 591 (2013)
Montoya EYO, Casazza AA, Aliakbarian B, Perego P, Converti A, de Carvalho JCM, Biotechnol. Prog., 30(4), 916 (2014)
Yusof YAM, Basari JMH, Mukti NA, Sabuddin R, Muda AR, Sulaiman S, Makpol S, Ngah WZW, Afr. J. Biotechnol., 10, 13536 (2013)
Tsuzuki M, Ohnuma E, Sato N, Takaku T, Kawaguchi A, Plant Physiol., 93, 851 (1990)
Muradyan EA, Klyachko-Gurvich GL, Tsoglin LN, Sergeyenko TV, Pronina NA, Russ. J. Plant Physiol., 51, 53 (2004)
Hoshida H, Ohira T, Minematsu A, Akada R, Nishizawa Y, J. Appl. Phycol., 17, 29 (2005)
Largeau C, Casadevall E, Berkaloff C, Dhamelincourt P, Phytochemistry, 19, 1043 (1980)
Shen Y, Yuan WQ, Adv. Mater. Res., 393, 655 (2012)
Zhu C, Lee Y, J. Appl. Phycol., 9, 189 (1997)
Ono E, Cuello J, Biosystems Eng., 96, 129 (2007)
Folch J, Lees M, Sloane-Stanley G, J. Biol. Chem., 226, 497 (1957)
Lepage G, Roy CC, J. Lipid Res., 25, 1391 (1984)
Bergman TL, Incropera FP, Lavine AS, DeWitt DP, Fundamentals of heat and mass transfer, Seventh Ed., John Wiley and Sons, New York (2011).
Ge YM, Liu JZ, Tian GM, Bioresour. Technol., 102(1), 130 (2011)
Dayananda C, Sarada R, Rani MU, Shamala TR, Ravishankar GA, Biomass Bioenerg., 31(1), 87 (2007)
Krienitz L, Hepperle D, Stich HB, Weiler W, Phycologia, 39, 19 (2000)
Tang DH, Han W, Li PL, Miao XL, Zhong JJ, Bioresour. Technol., 102(3), 3071 (2011)
Tsuzuki M, Gantar M, Aizawa K, Miyachi S, Plant Cell Physiol., 27, 737 (1986)
Dickson LG, Galloway RA, Patterson GW, Plant. Physiol., 44, 1413 (1969)
Hoffmann M, Marxen K, Schulz R, Vanselow KH, Mar. Drugs, 8, 2526 (2010)
Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S, Appl. Microbiol. Biotechnol., 90(4), 1429 (2011)
Chrismadha T, Borowitzka MA, J. Appl. Phycol., 6, 67 (1994)
Knothe G, Energy Fuels, 22(2), 1358 (2008)