Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 11, 2015
Accepted August 1, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Sorption of Cr(VI) by MgAl-NO3 hydrotalcite in fixed-bed column:Experiments and prediction of breakthrough curves
1Laboratory of Process and Environmental Engineering LSGPI, Faculty of Mechanical and Process Engineering, University of Sciences and Technology, Houari Boumediene, BP 32 El-Allia, Bab Ezzouar, 16111 Algiers, Algeria 2Laboratory of Natural Gas Chemistry, Institute of Chemistry, University of Sciences and Technology, Houari Boumediene, BP 32 El-Allia, Bab Ezzouar, 16111 Algiers, Algeria 3, Algeria
Korean Journal of Chemical Engineering, February 2016, 33(2), 638-648(11), 10.1007/s11814-015-0170-3
Download PDF
Abstract
This study describes the sorption of Cr(VI) by MgAl-NO3 hydrotalcite in a fixed-bed column. The sorbent was prepared via coprecipitation method and characterized by XRD, FTIR, BET surface area and pHzpc. The effects of operating parameters such as bed height, flow rate and inlet concentration were investigated in continuous mode. As a result, the exhaustion time increased with the increase of bed height, decrease of flow rate and inlet concentration. A mathematical model based on the constant pattern theory and the Freundlich isotherm was applied to predict the experimental data, and to evaluate the model parameters of the fixed-bed column. The developed model describes well the breakthrough curves at various operating conditions. The calculated volumetric mass transfer coefficient KLa depends directly on these conditions. KLa increased with increasing flow rate and inlet concentration, while remained almost constant with varying bed height.
References
Demirbas E, Kobya M, Senturk E, Ozkan T, Water SA, 30, 533 (2004)
Goyer RA, Mehlman MA, Advances in Modern Toxicology: Toxicology of Trace Elements, John Wiley & Sons, New York (1977).
Carson BL, Ellis HV, McCann JL, Toxicology and Biological Monitoring of Metals in Humans, Lewis Publishers, Chelsea, Michigan (1986).
Environmental Protection Agency (EPA), Cincinnati, Ohio, Environmental pollution control alternatives: Drinking Water Treatment for Small Communities, EPA/625/5-90/025, California (1990).
McLay WJ, Reinhard FP, Met. Finish., 98, 817 (2000)
Shah BA, Mistry CB, Shah AV, Microporous Mesoporous Mater., 196, 223 (2014)
Daoud W, Ebadi T, Fahimifar A, Korean J. Chem. Eng., 32(6), 1119 (2015)
Idris SA, Alotaibi KM, Peshkur TA, Anderson P, Morris M, Gibson LT, Microporous Mesoporous Mater., 165, 99 (2013)
Liu Q, Yang B, Zhang L, Huang R, Korean J. Chem. Eng., 32(7), 1314 (2015)
Kameda T, Kondo E, Yoshioka T, Sep. Purif. Technol., 122, 12 (2014)
Fida HS, Guo S, Zhang G, J. Colloid Interface Sci., 442, 30 (2015)
Sun L, Yuan ZG, Gong WB, Zhang LD, Xu ZL, Su GB, Han DG, Appl. Surf. Sci., 328, 606 (2015)
Salman M, Athar M, Farooq U, Nazir H, Noor A, Nazir S, Korean J. Chem. Eng., 30(6), 1257 (2013)
Goh KH, Lim TT, Dong ZL, Water Res., 42, 1343 (2008)
Ookubo A, Ooi K, Hayashi H, Langmuir, 9, 1418 (1993)
Xing K, Wang HZ, Guo LG, Song WD, Zhao ZP, Colloids Surf. A: Physicochem. Eng. Asp., 328, 15 (2008)
Wang SL, Liu CH, Wang MK, Chung YH, Chiang PN, Appl. Clay Sci., 43, 79 (2009)
Yang K, Yan LG, Yang YM, Yu SJ, Shan RR, Yu HQ, Zhu BC, Du B, Sep. Purif. Technol., 124, 36 (2014)
Koilraj P, Kannan S, Chem. Eng. J., 234, 406 (2013)
Hongo T, Wakasa H, Yamazaki A, Mater. Sci-Poland., 29, 86 (2011)
Srinivasa V, Prasanna P, Vishnu K, Solid State Sci., 10, 260 (2008)
Tovar-Gomez R, Moreno-Virgen MR, Dena-Aguilar JA, Hernandez-Montoya V, Bonilla-Petriciolet A, Montes-Moran MA, Chem. Eng. J., 228, 1098 (2013)
Mowla D, Karimi G, Salehi K, Chem. Eng. J., 218, 116 (2013)
de Souza SMAGU, Peruzzo LC, de Souza AAU, Appl. Math. Model., 32, 1711 (2008)
Singha S, Sarkar U, Korean J. Chem. Eng., 32(1), 20 (2015)
Clark RM, Environ. Sci. Technol., 21, 573 (1987)
Bohart G, Adams EQ, J. Am. Chem. Soc., 42, 523 (1920)
Faur C, Cougnaud A, Dreyfus G, Le Goirec R, Chem. Eng. J., 145(1), 7 (2008)
Aksu Z, Gonen F, Sep. Purif. Technol., 29, 205 (2006)
Goshadrou A, Moheb A, Desalination, 269(1-3), 170 (2011)
Escudero C, Poch J, Villaescusa I, Chem. Eng. J., 217, 129 (2013)
Alhamed YA, J. Hazard. Mater., 170(2-3), 763 (2009)
Vazquez G, Alonso R, Freire S, Gonzalez-Alvarez J, Antorrena G, J. Hazard. Mater., 133(1-3), 61 (2006)
Carberry JJ, Wendel MM, AIChE J., 9, 129 (1963)
Sherwood T, Pigford R, Mass Transfer, McGraw-Hill, New York (1975).
Ranz WE, Marshall WR, Chem. Eng. Prog., 48, 173 (1952)
Lv L, Zhang Y, Wang K, Ray AK, Zhao XS, J. Colloid Interface Sci., 325(1), 57 (2008)
Coulson JM, Richardson JF, Chemical Engineering, vol. 2, in: Buckhurst JR (Ed.), fifth ed., Particle Technology and Separation Processes, London, New York (2002).
Ruthven DM, Principles of adsorption and adsorption processes, Wiley, New York (1984).
Yang Q, Zhang J, Yang Q, Tang X, Yu Y, Yang G, Trans. Tianjin Univ., 17, 51 (2011)
Tian LY, Ma W, Han M, Chem. Eng. J., 156(1), 134 (2010)
APHA, Standard Methods for the Examination of Water and Wastewater (21st edn.). In: Eaton AD, Clesceri LS, Rice EW, Greenberg AE, Franson MAH (eds.), American Public Health Association, American Water Works Association, Water Environment Federation, USA (2005).
Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
Juang RS, Shiau RC, J. Membr. Sci., 165(2), 159 (2000)
Lv T, Ma W, Xin G, Wang R, Xu J, Liu D, Pan D, J. Hazard. Mater., 237-238, 121 (2012)
Srinivasa V, Prasanna P, Vishnu K, Solid State Sci., 10, 260 (2008)
Wang Q, Wu ZH, Tay HH, Chen LW, Liu Y, Chang J, Zhong ZY, Luo JZ, Borgna A, Catal. Today, 164(1), 198 (2011)
Rives-Arnau V, Munuera G, Criado JM, Spectrosc. Lett., 12, 733 (1979)
Labajos FM, Rives V, Ulibarri MA, J. Mater. Sci., 27, 1546 (1992)
Yang K, Yan LG, Yang YM, Yu SJ, Shan RR, Yu HQ, Zhu BC, Du B, Sep. Purif. Technol., 124, 36 (2014)
Cavani F, Trifiro F, Vaccari A, Catal. Today, 11, 173 (1991)
Nakamoto K, Infrared and Raman Spectra of Inorganic and Coordination Compounds (4th Ed.), John Wiley and Sons, New York, USA (1986).
Li Y, Gao B, Wu T, Sun D, Li X, Wang B, Lu F, Water Res., 43, 3067 (2009)
Kumar KV, Porkodi K, J. Hazard. Mater., 146(1-2), 214 (2007)
Giles CH, McEwans TH, Nakhwa SN, Smith D, J. Chem. Soc., 786, 3973 (1960)
Mckay G, Blair HS, Gardner JK, J. Appl. Polym. Sci., 27, 3043 (1982)
Lin SH, Juang RS, J. Hazard. Mater. B, 113, 195 (2004)
Lim AP, Aris AZ, Biochem. Eng. J., 87, 50 (2014)
Meng MJ, Feng YH, Zhang M, Liu Y, Ji YJ, Wang J, Wu YL, Yan YS, Chem. Eng. J., 225, 331 (2013)
Juang RS, Lin SH, Tsao KH, J. Colloid Interface Sci., 269(1), 46 (2004)
Shao Y, Zhang H, Yan Y, Chem. Eng. J., 225, 488 (2013)
Auta M, Hameed BH, Chem. Eng. J., 237, 352 (2014)
Chern JM, Chien YW, Water. Res., 36, 647 (2002)
Goyer RA, Mehlman MA, Advances in Modern Toxicology: Toxicology of Trace Elements, John Wiley & Sons, New York (1977).
Carson BL, Ellis HV, McCann JL, Toxicology and Biological Monitoring of Metals in Humans, Lewis Publishers, Chelsea, Michigan (1986).
Environmental Protection Agency (EPA), Cincinnati, Ohio, Environmental pollution control alternatives: Drinking Water Treatment for Small Communities, EPA/625/5-90/025, California (1990).
McLay WJ, Reinhard FP, Met. Finish., 98, 817 (2000)
Shah BA, Mistry CB, Shah AV, Microporous Mesoporous Mater., 196, 223 (2014)
Daoud W, Ebadi T, Fahimifar A, Korean J. Chem. Eng., 32(6), 1119 (2015)
Idris SA, Alotaibi KM, Peshkur TA, Anderson P, Morris M, Gibson LT, Microporous Mesoporous Mater., 165, 99 (2013)
Liu Q, Yang B, Zhang L, Huang R, Korean J. Chem. Eng., 32(7), 1314 (2015)
Kameda T, Kondo E, Yoshioka T, Sep. Purif. Technol., 122, 12 (2014)
Fida HS, Guo S, Zhang G, J. Colloid Interface Sci., 442, 30 (2015)
Sun L, Yuan ZG, Gong WB, Zhang LD, Xu ZL, Su GB, Han DG, Appl. Surf. Sci., 328, 606 (2015)
Salman M, Athar M, Farooq U, Nazir H, Noor A, Nazir S, Korean J. Chem. Eng., 30(6), 1257 (2013)
Goh KH, Lim TT, Dong ZL, Water Res., 42, 1343 (2008)
Ookubo A, Ooi K, Hayashi H, Langmuir, 9, 1418 (1993)
Xing K, Wang HZ, Guo LG, Song WD, Zhao ZP, Colloids Surf. A: Physicochem. Eng. Asp., 328, 15 (2008)
Wang SL, Liu CH, Wang MK, Chung YH, Chiang PN, Appl. Clay Sci., 43, 79 (2009)
Yang K, Yan LG, Yang YM, Yu SJ, Shan RR, Yu HQ, Zhu BC, Du B, Sep. Purif. Technol., 124, 36 (2014)
Koilraj P, Kannan S, Chem. Eng. J., 234, 406 (2013)
Hongo T, Wakasa H, Yamazaki A, Mater. Sci-Poland., 29, 86 (2011)
Srinivasa V, Prasanna P, Vishnu K, Solid State Sci., 10, 260 (2008)
Tovar-Gomez R, Moreno-Virgen MR, Dena-Aguilar JA, Hernandez-Montoya V, Bonilla-Petriciolet A, Montes-Moran MA, Chem. Eng. J., 228, 1098 (2013)
Mowla D, Karimi G, Salehi K, Chem. Eng. J., 218, 116 (2013)
de Souza SMAGU, Peruzzo LC, de Souza AAU, Appl. Math. Model., 32, 1711 (2008)
Singha S, Sarkar U, Korean J. Chem. Eng., 32(1), 20 (2015)
Clark RM, Environ. Sci. Technol., 21, 573 (1987)
Bohart G, Adams EQ, J. Am. Chem. Soc., 42, 523 (1920)
Faur C, Cougnaud A, Dreyfus G, Le Goirec R, Chem. Eng. J., 145(1), 7 (2008)
Aksu Z, Gonen F, Sep. Purif. Technol., 29, 205 (2006)
Goshadrou A, Moheb A, Desalination, 269(1-3), 170 (2011)
Escudero C, Poch J, Villaescusa I, Chem. Eng. J., 217, 129 (2013)
Alhamed YA, J. Hazard. Mater., 170(2-3), 763 (2009)
Vazquez G, Alonso R, Freire S, Gonzalez-Alvarez J, Antorrena G, J. Hazard. Mater., 133(1-3), 61 (2006)
Carberry JJ, Wendel MM, AIChE J., 9, 129 (1963)
Sherwood T, Pigford R, Mass Transfer, McGraw-Hill, New York (1975).
Ranz WE, Marshall WR, Chem. Eng. Prog., 48, 173 (1952)
Lv L, Zhang Y, Wang K, Ray AK, Zhao XS, J. Colloid Interface Sci., 325(1), 57 (2008)
Coulson JM, Richardson JF, Chemical Engineering, vol. 2, in: Buckhurst JR (Ed.), fifth ed., Particle Technology and Separation Processes, London, New York (2002).
Ruthven DM, Principles of adsorption and adsorption processes, Wiley, New York (1984).
Yang Q, Zhang J, Yang Q, Tang X, Yu Y, Yang G, Trans. Tianjin Univ., 17, 51 (2011)
Tian LY, Ma W, Han M, Chem. Eng. J., 156(1), 134 (2010)
APHA, Standard Methods for the Examination of Water and Wastewater (21st edn.). In: Eaton AD, Clesceri LS, Rice EW, Greenberg AE, Franson MAH (eds.), American Public Health Association, American Water Works Association, Water Environment Federation, USA (2005).
Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
Juang RS, Shiau RC, J. Membr. Sci., 165(2), 159 (2000)
Lv T, Ma W, Xin G, Wang R, Xu J, Liu D, Pan D, J. Hazard. Mater., 237-238, 121 (2012)
Srinivasa V, Prasanna P, Vishnu K, Solid State Sci., 10, 260 (2008)
Wang Q, Wu ZH, Tay HH, Chen LW, Liu Y, Chang J, Zhong ZY, Luo JZ, Borgna A, Catal. Today, 164(1), 198 (2011)
Rives-Arnau V, Munuera G, Criado JM, Spectrosc. Lett., 12, 733 (1979)
Labajos FM, Rives V, Ulibarri MA, J. Mater. Sci., 27, 1546 (1992)
Yang K, Yan LG, Yang YM, Yu SJ, Shan RR, Yu HQ, Zhu BC, Du B, Sep. Purif. Technol., 124, 36 (2014)
Cavani F, Trifiro F, Vaccari A, Catal. Today, 11, 173 (1991)
Nakamoto K, Infrared and Raman Spectra of Inorganic and Coordination Compounds (4th Ed.), John Wiley and Sons, New York, USA (1986).
Li Y, Gao B, Wu T, Sun D, Li X, Wang B, Lu F, Water Res., 43, 3067 (2009)
Kumar KV, Porkodi K, J. Hazard. Mater., 146(1-2), 214 (2007)
Giles CH, McEwans TH, Nakhwa SN, Smith D, J. Chem. Soc., 786, 3973 (1960)
Mckay G, Blair HS, Gardner JK, J. Appl. Polym. Sci., 27, 3043 (1982)
Lin SH, Juang RS, J. Hazard. Mater. B, 113, 195 (2004)
Lim AP, Aris AZ, Biochem. Eng. J., 87, 50 (2014)
Meng MJ, Feng YH, Zhang M, Liu Y, Ji YJ, Wang J, Wu YL, Yan YS, Chem. Eng. J., 225, 331 (2013)
Juang RS, Lin SH, Tsao KH, J. Colloid Interface Sci., 269(1), 46 (2004)
Shao Y, Zhang H, Yan Y, Chem. Eng. J., 225, 488 (2013)
Auta M, Hameed BH, Chem. Eng. J., 237, 352 (2014)
Chern JM, Chien YW, Water. Res., 36, 647 (2002)