ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 9, 2015
Accepted August 13, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Kinetic model for sorption of divalent heavy metal ions on low cost minerals

Department of Chemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India 1Environment Chemistry Division, C.S.I.R.-A.M.P.R.I., Bhopal-462026, India
drmprasad56@gmail.com
Korean Journal of Chemical Engineering, February 2016, 33(2), 649-656(8), 10.1007/s11814-015-0177-9
downloadDownload PDF

Abstract

A mathematical model is proposed that could predict the kinetic parameters for adsorption of divalent heavy metal ions (lead, copper and zinc) onto low-cost adsorbents such as pyrophyllite and rock phosphate using experimental data. The experiments were conducted with the initial concentrations of metal ions ranging from 10mg/L to 100mg/L. The mathematical model is based on the application of the Redlich-Peterson isotherm to mass transfer across the film surrounding the adsorbent. The developed non-linear sorption kinetic (NSK) mathematical model was solved using numerical integration by the trapezoidal method in Microsoft Excel along with the SOLVER function to obtain the best simulated values of the Redlich-Peterson constants A, B, r, the order of reaction n, and the film transfer coefficient α. Dissolution followed by precipitation was found to be the most probable mechanism responsible for heavy metal ion uptake by rock phosphate, while for pyrophyllite physical adsorption was governing mechanism at low concentrations (<100mg/L). The values of parameters A, B, r and α lie in the ranges of 0.015-23.2, 0.00003-3.09, 0.072-1, and 0.000057-52.8 [(L/mg)(n.1)/min], respectively, under different experimental conditions.

References

Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2 (2010)
Barbier F, Duc G, Petit-Ramel M, Colloids Surf. A: Physicochem. Eng. Asp., 166, 153 (2000)
Lee SH, Vigneswaran S, Moon H, Ind. Chem. Eng., 40, 5 (1998)
Seki H, Suzuki A, J. Colloid Interface Sci., 171(2), 490 (1995)
Sen TK, Mahajan SP, Khila KC, Colloids Surf. A: Physicochem. Eng. Asp., 211, 91 (2002)
Brown PA, Gill SA, Allen SJ, Water Res., 34, 3907 (2000)
Ho YS, McKay G, Water Res., 34, 735 (2000)
Hoeffer PR, Lecuyer I, Cloirec PL, Water Res., 35, 965 (2001)
Burns CA, Cass PJ, Harding IH, Crawford RJ, Colloids Surf. A: Physicochem. Eng. Asp., 155, 63 (1999)
Prasad M, Amritphale SS, Saxena S, Chandra N, Miner. Eng., 13, 1301 (2000)
Prasad M, Amritphale SS, Saxena S, Chandra N, Ind. Eng. Chem. Res., 37, 4816 (2002)
Klapiszewski L, Bartczak P, Wysokowski M, Jankowska M, Kabat K, Jesionowski T, Chem. Eng. J., 260, 684 (2015)
Wysokowski M, Klapiszewski L, Moszynski D, Bartczak P, Szatkowski T, Majchrzak I, Stefanska KS, Bazhenov VV, Jesionowski T, Mar. Drugs., 12, 2245 (2014)
Prasad M, Saxena S, J. Environ. Manage., 88, 1273 (2008)
Scheidegger AM, Lamble GM, Sparks DI, Environ. Sci. Technol., 30, 548 (1996)
Gucek A, Sener S, Bilgen S, Mamano MA, J. Colloid Interface Sci., 286(1), 53 (2005)
Sayilkan H, Erdemoglu S, Sener S, Sayilkan F, Akarsu M, Erdemoglu M, J. Colloid Interface Sci., 275(2), 530 (2004)
Erdemoglu M, Erdemoglu S, Sayilkan F, Akarsu M, Sener S, Sayilkan H, Appl. Clay Sci., 27, 41 (2004)
Jeon BH, Dempsey BA, Burgos WD, Royer RA, Roden EE, Water Res., 38, 2499 (2004)
Faur-Brasquet C, Reddad Z, Kadirvelu K, Le Cloirec P, Appl. Surf. Sci., 196(1-4), 356 (2002)
Voegelin A, Kretzschmar R, Eur. J. Soil Sci., 54, 387 (2003)
Xu Y, Axe L, Yee N, Dyer JA, Environ. Sci. Technol., 40, 2213 (2006)
Babu BV, Ramakrishna V, Proceedings of International Symposium and 57th Annual Session of II ChE in Association with AIChE (CHEMCON) Mumbai, 27 (2004).
Gupta N, Prasad M, Singhal N, Kumar V, Ind. Eng. Chem. Res., 48(4), 2125 (2009)
Singhal N, Prasad M, Gupta N, Kumar V, J. Colloid Interface Sci., 313(2), 423 (2007)
Ng JCY, Cheung WH, McKay G, J. Colloid Interface Sci., 255(1), 64 (2002)
Gimbert F, Morin-Crini N, Renault F, Badot PM, Crini G, J. Hazard. Mater., 157(1), 34 (2008)
Wong YC, Szeto YS, Cheung WH, McKay G, Process Biochem., 39, 693 (2004)
Jossens L, Prausnitz JM, Fritz W, Schlunder EU, Myers AL, Chem. Eng. Sci., 33, 1097 (1978)
Mullah AH, Robinson CW, Water Res., 30, 2901 (1996)
Saxena S, Removal of toxic elements from aqueous solutions using different substrate materials, Ph.D. Thesis, Barkatullah University, Bhopal (2001).
Prasad M, Majumder AK, Rao LS, Rao TC, Project completion report on ‘Beneficiation and Industrial Utilisation of Some Fertliliser Minerals of Madhya Pradesh’ submitted to Department of Mines, Government of India, New Delhi (1996).
Prasad M, Ph.D. Thesis: Ore beneficiation studies of low grade rock phosphate deposits of Madhya Pradesh, Barkatullah University, Bhopal (1998).
Prasad M, Saxena S, J. Environ. Manage., 88, 1273 (2008)
Prasad M, Saxena S, Ind. Eng. Chem. Res., 43(6), 1512 (2004)
Chegrouche S, Mellah A, Telmoune S, Water Res., 31, 1733 (1997)
Suzuki T, Hatsushika T, Hayakawa Y, J. Chem. Soc.-Faraday Trans., 177, 1059 (1981)
Suzuki Y, Takuchi Y, J. Chem. Eng. Jpn., 27, 571 (1997)
Xu Y, Schwartz FW, Traina SJ, Environ. Sci. Technol., 28, 1472 (1994)
Ma QY, Traina SJ, Logan SJ, Ryan JA, Environ. Sci. Technol., 27, 1803 (1993)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로