ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 22, 2015
Accepted September 16, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

New criteria for filament breakup in droplet-on-demand inkjet printing using volume of fluid (VOF) method

IR4TD, Mechanical Engineering Department, University of Kentucky, Lexington, KY 40506, U.S.A., USA
sadegh.poozesh@gmail.com
Korean Journal of Chemical Engineering, March 2016, 33(3), 775-781(7), 10.1007/s11814-015-0197-5
downloadDownload PDF

Abstract

A volume of fluid (VOF) numerical study is presented in which new pi number-based criteria are discussed that identify and separate three different regimes for a droplet-on-demand (DOD) print-head system. A trailing filament coalesces into the main droplet while the filament breaks into one or multiple satellite droplet(s). The numerical simulation results are compared with published large-scale experimental results that used a 2 mm diameter inkjet nozzle head, roughly 50 times larger than the actual diameter of inkjet outlets. Liquid filament break-up behavior is predicted using a combination of two pi-numbers, including either Weber (We)-Ohnesorge (Oh) number couplets or Reynolds (Re)-Weber (We) number couplets that are dependent only on the ejected liquid properties and the velocity waveform at the print-head inlet. These new criteria have merit over the currently existing ones that require accurate measurements of actual droplets to determine filament physical features like length and diameter [1].

References

Hoath SD, Jung S, Hutchings IM, Phys. Fluids, 25, 021701 (2013)
Burr RF, Tence DA, Le HP, Adams RL, Mutton JC, US Patents, 5,495,270 (1996).
Jo BW, Lee AY, Ahn KH, Lee SJ, Korean J. Chem. Eng., 26(2), 339 (2009)
Castrejon-Pita AA, Castrejon-Pita JR, Martin GD, Rev. Sci. Instrum., 83, 115105 (2012)
Lee CS, Yi SC, Korean J. Chem. Eng., 21(6), 1153 (2004)
Chen AU, Basaran OA, Phys. Fluids, 14, L1 (2002)
Basaran OA, AIChE J., 48(9), 1842 (2002)
Esther J, Sukla LB, Pradhan N, Panda S, Korean J. Chem. Eng., 32(1), 1 (2015)
Dong H, Carr WW, Morris JF, Phys. Fluids, 18, 072102 (2006)
Castrejon-Pita AA, Castrejon-Pita JR, Hutchings IM, Phys. Rev. Lett., 108, 074506 (2012)
Castrejon-Pita JR, Morrison NF, Harlen OG, Martin GD, Hutchings IM, Phys. Rev. E, 83, 036306 (2011)
Fromm J, IBM Corp., Yorktown Heights, NY (1981).
Kim E, Baek J, Phys. Fluids, 24, 082103 (2012)
Xu Q, Basaran OA, Phys. Fluids, 19, 102111 (2007)
Wijshoff H, Phys. Rep., 491, 77 (2010)
Yang FL, Zhou SJ, Zhang CX, Wang GC, Korean J. Chem. Eng., 30(10), 1843 (2013)
Poozesh S, Akafuah N, Saito K. SAE Technical Paper, No. 2015-01-0737 (2015).
Delhaye JM, Coutris N, Herran L, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 8 C (2013).
Emori R, Saito K, Sekimoto K, Tokyo, Japan: Gihodo. Second Print in (2008).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로