Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 2, 2015
Accepted September 19, 2015
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effects of uniform magnetic field on the interaction of side-by-side rising bubbles in a viscous liquid
Faculty of Mechanical Engineering, Sahand University of Technology, Tabriz, Iran
davoodjalali@sut.ac.ir
Korean Journal of Chemical Engineering, March 2016, 33(3), 795-805(11), 10.1007/s11814-015-0201-0
Download PDF
Abstract
Effects of uniform magnetic fields on the interaction and coalescence of side-by-side rising bubbles of dielectric fluids were not studied; so in the present research, effects of different strengths of uniform magnetic field on the interaction of two bubbles rising side by side in a viscous and initially stagnant liquid are studied, numerically. For numerical modeling of the problem, a full computer code was developed to solve the governing equations which are continuity, Navier-Stokes, magnetic field and interface capturing equations which are level set and re-initialization equations. The finite volume method is used for the discretization of the hydrodynamic equations where the finite difference method is used to discretization of the magnetic field equations. The results are compared with available numerical and experimental results which show a good agreement. It is found that the uniform magnetic field can be used for contactless control of side-by-side coalescence of bubbles.
References
Li HZ, Mouline Y, Choplin L, Midoux N, Int. J. Multiph. Flow, 23(4), 713 (1997)
Liu JR, Zhu CY, Fu TT, Ma YG, Li HZ, Chem. Eng. Sci., 93, 55 (2013)
Duineveld PC, App. Sci. Res., 58, 409 (1998)
Das RK, Pattanayak S, Chem. Eng. Sci., 49(13), 2163 (1994)
Ramos-Banderas A, Morales RD, Sanchez-Perez R, Garcia-Demedices L, Solorio-Diaz G, Int. J. Multiph. Flow, 31(5), 643 (2005)
Xie W, Li R, Lu X, Han P, Gu S, Korean J. Chem. Eng., 32(4), 643 (2015)
Alinezhad K, Hosseini M, Movagarnejad K, Salehi M, Korean J. Chem. Eng., 27(1), 198 (2010)
Ki H, Comput. Phys. Commun., 181, 999 (2010)
Ansari MR, Hadidi A, Nimvari ME, J. Magn. Magn. Mater., 324, 4094 (2012)
Chen RH, Tian WX, Su GH, Qiu SZ, Ishiwatari Y, Oka Y, Chem. Eng. Sci., 66(21), 5055 (2011)
Sussman M, Fatemi E, Smereka P, Osher S, Comput. Fluids, 27, 663 (1988)
Kim JH, Ahn KH, Lee SJ, Korean J. Chem. Eng., 8, 1010 (2012)
Marchandise E, Geuzaine P, Chevaugeon N, Remacle J, J. Comput. Phys., 225, 949 (2007)
Ansari MR, Nimvari ME, Ann. Nucl. Energy, 38, 2770 (2011)
Osher S, Sethian JA, J. Comput. Phys., 79, 12 (1988)
Sussman M, Smereka P, Oshe SJ, J. Comput. Phys., 114, 146 (1994)
Melia F, Electrodynamics, The University of Chicago Press, Chicago (2001).
Brackbill JU, Kothe C, Zemach DB, J. Comput. Phys., 100, 335 (1992)
Golub GH, Greenbaum A, Stuart AM, Suli E, Mathematical methods for the magneto hydrodynamics of liquid metals, Oxford University Press (2006).
Huang HL, Ying A, Abdou MA, Fusion Eng. Des., 63, 361 (2002)
Deshpande KB, Zimmerman WB, Chem. Eng. Sci., 61(19), 6486 (2006)
Chesters AK, Hofman G, Appl. Sci. Res., 38, 353 (1982)
Folkersma R, Stein HN, van de Vosse FN, Int. J. Multiph. Flow, 26(5), 877 (2000)
Liu JR, Zhu CY, Fu TT, Ma YG, Li HZ, Chem. Eng. Sci., 93, 55 (2013)
Duineveld PC, App. Sci. Res., 58, 409 (1998)
Das RK, Pattanayak S, Chem. Eng. Sci., 49(13), 2163 (1994)
Ramos-Banderas A, Morales RD, Sanchez-Perez R, Garcia-Demedices L, Solorio-Diaz G, Int. J. Multiph. Flow, 31(5), 643 (2005)
Xie W, Li R, Lu X, Han P, Gu S, Korean J. Chem. Eng., 32(4), 643 (2015)
Alinezhad K, Hosseini M, Movagarnejad K, Salehi M, Korean J. Chem. Eng., 27(1), 198 (2010)
Ki H, Comput. Phys. Commun., 181, 999 (2010)
Ansari MR, Hadidi A, Nimvari ME, J. Magn. Magn. Mater., 324, 4094 (2012)
Chen RH, Tian WX, Su GH, Qiu SZ, Ishiwatari Y, Oka Y, Chem. Eng. Sci., 66(21), 5055 (2011)
Sussman M, Fatemi E, Smereka P, Osher S, Comput. Fluids, 27, 663 (1988)
Kim JH, Ahn KH, Lee SJ, Korean J. Chem. Eng., 8, 1010 (2012)
Marchandise E, Geuzaine P, Chevaugeon N, Remacle J, J. Comput. Phys., 225, 949 (2007)
Ansari MR, Nimvari ME, Ann. Nucl. Energy, 38, 2770 (2011)
Osher S, Sethian JA, J. Comput. Phys., 79, 12 (1988)
Sussman M, Smereka P, Oshe SJ, J. Comput. Phys., 114, 146 (1994)
Melia F, Electrodynamics, The University of Chicago Press, Chicago (2001).
Brackbill JU, Kothe C, Zemach DB, J. Comput. Phys., 100, 335 (1992)
Golub GH, Greenbaum A, Stuart AM, Suli E, Mathematical methods for the magneto hydrodynamics of liquid metals, Oxford University Press (2006).
Huang HL, Ying A, Abdou MA, Fusion Eng. Des., 63, 361 (2002)
Deshpande KB, Zimmerman WB, Chem. Eng. Sci., 61(19), 6486 (2006)
Chesters AK, Hofman G, Appl. Sci. Res., 38, 353 (1982)
Folkersma R, Stein HN, van de Vosse FN, Int. J. Multiph. Flow, 26(5), 877 (2000)